scholarly journals Driving Torque Model and Accuracy Test of Multilink High-Speed Punch

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fuxing Li ◽  
Hao Liu ◽  
Menglei Li ◽  
Jun Guo ◽  
Xinjian Lu ◽  
...  

Inertia force is an important factor for operation stability and stamping precision of high-speed punch; adjusting drive torque of high-speed punch can realize effective control of inertia force. In this paper, a kind of 600 KN multilink high-speed punch inertia force balancing mechanism was designed. The calculation model of ideal inertia force was proposed based on conservation of energy and numerical analysis method. In addition, the calculation model of ideal driving torque were analyzed, simplified, and corrected by using numerical calculation and simulation methods, which solved the problem of controlling inertia force from the perspective of driving torque and realized the stability strategy planning of high-speed multilink punch press. Finally, the proposed ideal driving torque calculation model was simulated and verified by ADAMAS and bottom-dead-point accuracy test was carried out.

2008 ◽  
Vol 45 (03) ◽  
pp. 147-156
Author(s):  
Marcelo A. S. Neves ◽  
Vadim Belenky

The paper gives a brief review of the papers presented at the Ninth International Conference on Stability of Ships and Ocean Vehicles that was held on September 25 to 29, 2006 in Rio de Janeiro, Brazil. The review covers the following stability-related subjects: stability regulations, intact stability, wind and waves, damage stability, stability in operation, stability of high-speed craft, and offshore vehicles.


2021 ◽  
pp. 1-17
Author(s):  
Yibo Hu ◽  
Yanding Wei ◽  
Mengnan Liu

Abstract In order to reinforce the operation stability and obstacle capability of a spherical robot, this paper presents a spherical robot with high-speed rotating flywheel, the mechanical structure of which is mainly composed of a spherical shell, a double pendulum on both sides and two high-speed flywheels. The robot has three excitation modes: level running, self-stability operating and obstacle surmounting. The dynamic characteristics of the pendulum, flywheel and brake of the robot are discussed through the establishment of kinematic and dynamic model of the spherical robot and the influence of parameters like weight, flywheel speed and flywheel position on its dynamic characteristics and robot performance is optimized and analyzed in detail. The research results indicate that the two flywheels located in the center of the sphere apart can bring the maximum stability gain to the sphere. Finally, the simulation and experiment of the stability gain brought by the high-speed flywheel to the sphere verify that the operation stability of the sphere is effectively improved after using the flywheel, and the robot that stops the flywheel through a brake fixed on the pendulum has better obstacle surmounting performance.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Author(s):  
K. Bobzin ◽  
M. Öte ◽  
M. A. Knoch ◽  
I. Alkhasli ◽  
H. Heinemann

AbstractIn plasma spraying, instabilities and fluctuations of the plasma jet have a significant influence on the particle in-flight temperatures and velocities, thus affecting the coating properties. This work introduces a new method to analyze the stability of plasma jets using high-speed videography. An approach is presented, which digitally examines the images to determine the size of the plasma jet core. By correlating this jet size with the acquisition time, a time-dependent signal of the plasma jet size is generated. In order to evaluate the stability of the plasma jet, this signal is analyzed by calculating its coefficient of variation cv. The method is validated by measuring the known difference in stability between a single-cathode and a cascaded multi-cathode plasma generator. For this purpose, a design of experiment, covering a variety of parameters, is conducted. To identify the cause of the plasma jet fluctuations, the frequency spectra are obtained and subsequently interpreted by means of the fast Fourier transformation. To quantify the significance of the fluctuations on the particle in-flight properties, a new single numerical parameter is introduced. This parameter is based on the fraction of the time-dependent signal of the plasma jet in the relevant frequency range.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Festus Idowu Oluwajobi ◽  
Nguyen Dong-Nhat ◽  
Amin Malekmohammadi

AbstractIn this paper, the performance of a novel multilevel signaling based on Manchester code namely four-level Manchester Coding (4-MC) technique is investigated for next generation high-speed optical fiber communication links. The performance of 4-MC is studied and compared with conventional Manchester modulation and four-level pulse amplitude modulation (4-PAM) formats in terms of receiver sensitivity, spectral efficiency and dispersion tolerance at the bit rate of 40 Gb/s. The bit error rate (BER) calculation model for the proposed multilevel scheme has also been developed. The calculated receiver sensitivity and the chromatic dispersion tolerance at the BER of 10–9 of the proposed scheme are −22 dBm and 67.5 ps/nm, respectively. It is observed that, 4-MC scheme is superior in comparison to 4-PAM by 3.5 dB in terms of receiver sensitivity in back-to-back scenario. Therefore, the proposed scheme can be considered as an alternative to current 4-PAM system.


Author(s):  
Alptunc Comak ◽  
Orkun Ozsahin ◽  
Yusuf Altintas

High-speed machine tools have parts with both stationary and rotating dynamics. While spindle housing, column, and table have stationary dynamics, rotating parts may have both symmetric (i.e., spindle shaft and tool holder) and asymmetric dynamics (i.e., two-fluted end mill) due to uneven geometry in two principal directions. This paper presents a stability model of dynamic milling operations with combined stationary and rotating dynamics. The stationary modes are superposed to two orthogonal directions in rotating frame by considering the time- and speed-dependent, periodic dynamic milling system. The stability of the system is solved in both frequency and semidiscrete time domain. It is shown that the stability pockets differ significantly when the rotating dynamics of the asymmetric tools are considered. The proposed stability model has been experimentally validated in high-speed milling of an aluminum alloy with a two-fluted, asymmetric helical end mill.


2002 ◽  
Vol 472 ◽  
pp. 229-261 ◽  
Author(s):  
LUCA BRANDT ◽  
DAN S. HENNINGSON

A transition scenario initiated by streamwise low- and high-speed streaks in a flat-plate boundary layer is studied. In many shear flows, the perturbations that show the highest potential for transient energy amplification consist of streamwise-aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. In a previous investigation (Andersson et al. 2001), the stability of these streaks in a zero-pressure-gradient boundary layer was studied by means of Floquet theory and numerical simulations. The sinuous instability mode was found to be the most dangerous disturbance. We present here the first simulation of the breakdown to turbulence originating from the sinuous instability of streamwise streaks. The main structures observed during the transition process consist of elongated quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of alternating sign are overlapping in the streamwise direction in a staggered pattern. The present scenario is compared with transition initiated by Tollmien–Schlichting waves and their secondary instability and by-pass transition initiated by a pair of oblique waves. The relevance of this scenario to transition induced by free-stream turbulence is also discussed.


Sign in / Sign up

Export Citation Format

Share Document