scholarly journals Bax Targeted by miR-29a Regulates Chondrocyte Apoptosis in Osteoarthritis

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guiqiang Miao ◽  
Xuehui Zang ◽  
Huige Hou ◽  
Hui Sun ◽  
Lihui Wang ◽  
...  

Osteoarthritis (OA) is a chronic degenerative joint disease, where chondrocyte apoptosis is responsible for cartilage degeneration. Bax is a well-known proapoptotic protein of the Bcl-2 family, involved in a large number of physiological and pathological processes. However, the regulation mechanisms of Bax underlying chondrocyte apoptosis in OA remain unknown. In the present study, we determined the role of Bax in human OA and chondrocyte apoptosis. The results showed that Bax was upregulated in chondrocytes from the articular cartilage of OA patients and in cultured chondrocyte-like ATDC5 cells treated by IL-1β. Bax was identified to be the direct target of miR-29a by luciferase reporter assay and by western blotting. Inhibition of miR-29a by the mimics protested and overexpression by miR-29a inhibitors aggravated ATDC5 apoptosis induced by IL-1β. These data reveal that miR-29a/Bax axis plays an important role in regulating chondrocyte apoptosis and suggest that targeting the proapoptotic protein Bax and increasing expression levels of miR-29a emerge as potential approach for protection against the development of OA.

Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Yeri Alice Rim ◽  
Ji Hyeon Ju

Osteoarthritis (OA) is a chronic degenerative joint disease where the main characteristics include cartilage degeneration and synovial membrane inflammation. These changes in the knee joint eventually dampen the function of the joint and restrict joint movement, which eventually leads to a stage where total joint replacement is the only treatment option. While much is still unknown about the pathogenesis and progression mechanism of OA, joint fibrosis can be a critical issue for better understanding this disease. Synovial fibrosis and the generation of fibrocartilage are the two main fibrosis-related characteristics that can be found in OA. However, these two processes remain mostly misunderstood. In this review, we focus on the fibrosis process in OA, especially in the cartilage and the synovium tissue, which are the main tissues involved in OA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaochen Li ◽  
Li Zhang ◽  
Xiaoqing Shi ◽  
Taiyang Liao ◽  
Nongshan Zhang ◽  
...  

Osteoarthritis (OA) is a worldwide degenerative joint disease that seriously impaired the quality of life of patients. OA has been established as a disease with metabolic disorder. Cholesterol 25-hydroxylase (CH25H) was proved to play a key role in cartilage cholesterol metabolism. However, the biological function and mechanism of CH25H in OA remains further investigation. Growing researches have proved the vital roles of miRNAs in OA progression. In this study, we screened out miR-10a-3p through high-throughput miRNA sequencing which may bind to CH25H. Molecular mechanism investigation indicated that miR-10a-3p is an upstream target of CH25H. Functional exploration revealed miR-10a-3p suppressed the inflammatory responses, cholesterol metabolism and extracellular matrix (ECM) degradation in primary chondrocytes. Moreover, rescue assays implied that miR-10a-3p reversed CH25H plasmids induced inflammatory cytokine production and ECM degradation. Furthermore, the OA rat model was established to explore the function of miR-10a-3p in vivo. The results showed that miR-10a-3p can recover the OA features through targeting CH25H/CYP7B1/RORα axis. In conclusion, these findings implied a crucial role of miR-10a-3p/CH25H/CYP7B1/RORα axis in OA, which may provide a promising therapeutic strategy for OA.


Cartilage ◽  
2021 ◽  
pp. 194760352110448
Author(s):  
Zhen Jia ◽  
Qing-Jun Wei

Objective Osteoarthritis (OA) is a degenerative joint disease characterized by deterioration of articular cartilage functions. Previous studies have confirmed the role of circular RNAs (circRNAs) in OA, but the role of mechanical stress–related circRNA (circRNA-MSR) in OA is unknown. Design The human chondrocytes C28/I2 were cultured and treated with lipopolysaccharide (LPS) to establish the OA model. The mRNA and protein levels were measured by qRT-PCR or Western blot. Cell viability was analyzed by MTT assay. Flow cytometry was carried out to detect cell apoptosis. The levels of TNF-α, IL-1β, and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). Pull-down assay was conducted to measure circRNA-MSR-related miRNA. Dual-luciferase reporter gene detection was performed to detect the target relationships between miR-643 and circRNA-MSR or Mitogen-activated protein kinase kinase 6 (MAP2K6). The RNA–fluorescence in situ hybridization (RNA-FISH) assay was conducted to verify the localization of circRNA-MSR and miR-643. Results The expressions of circRNA-MSR were upregulated in LPS stimulated C28/I2 cells. Knockdown of circRNA-MSR can inhibit LPS-induced apoptosis, inflammatory response, and extracellular matrix (ECM) degradation, and promote cell C28/I2 cells proliferation. Moreover, circRNA-MSR directly targeted miR-643. RNA-FISH exhibited that circRNA-MSR may act as a competing endogenous RNA (ceRNA) of miR-643. Over-expression of miR-643 could alleviate LPS-induced C28/I2 chondrocyte injury and promote cell proliferation. Besides, miR-643 directly bound to MAP2K6 mRNA. MiR-643 inhibition or MAP2K6 overexpression can reverse the role of circRNA-MSR knockdown on LPS-treated chondrocytes. Conclusion circRNA-MSR can upregulate MAP2K6 by targeting miR-643, thereby inhibiting cell proliferation and promoting apoptosis of C28/I2 cells.


Author(s):  
Teng Yao ◽  
Yute Yang ◽  
Ziang Xie ◽  
Yining Xu ◽  
Yizhen Huang ◽  
...  

Osteoarthritis (OA) is a degenerative joint disease. Currently, apart from symptomatic treatment or joint replacement, no other effective treatments for OA exist. The mechanisms underlying OA remain elusive and require further research. Circular RNAs (circRNAs) are known to be involved in many diseases; however, their function in OA is not yet fully understood. Here, we identified a novel circRNA, Circ0083429. The role of Circ0083429 in OA was confirmed via western blot (WB), quantitative real-time PCR (qRT-PCR), and immunofluorescence (IF) through knockdown and overexpression experiments. The binding of Circ0083429 to downstream miR-346 and its target gene SMAD3 was predicted via bioinformatics analysis and verified using a luciferase reporter assay and RNA pulldown experiments. Finally, the function of Circ0083429 was evaluated in mouse OA models. In our study, we found that Circ0083429 regulates the homeostasis of the extracellular matrix (ECM) in human chondrocytes. Mechanistically, Circ0083429 affects OA by regulating the mRNA level of SMAD3 through the sponging of microRNA (miRNA)-346. Injecting adeno-associated virus Circ0083429 into the intra-junction of the mouse knee alleviated OA. In conclusion, Circ0083429 regulates the ECM via the regulation of the downstream miRNA-346/SMAD3 in human chondrocytes, which provides a new therapeutic strategy for OA.


2019 ◽  
Vol 51 (10) ◽  
pp. 1-13 ◽  
Author(s):  
Shu Hu ◽  
Xiaoyi Zhao ◽  
Guping Mao ◽  
Ziji Zhang ◽  
Xingzhao Wen ◽  
...  

Abstract MicroRNAs (miRNAs, miR) play a key role in the pathogenesis of osteoarthritis (OA). Few studies have examined the regulatory role of P21-activated kinases (PAKs), a family of serine/threonine kinases, in OA. The aim of this study was to determine whether miR-455-3p can regulate cartilage degeneration in OA by targeting PAK2. MiR-455-3p knockout mice showed significant degeneration of the knee cartilage. MiR-455-3p expression increased and PAK2 expression decreased in the late stage of human adipose-derived stem cell (hADSC) chondrogenesis and in chondrocytes affected by OA. Furthermore, in both miR-455-3p-overexpressing chondrocytes and PAK2-suppressing chondrocytes, cartilage-specific genes were upregulated, and hypertrophy-related genes were downregulated. A luciferase reporter assay confirmed that miR-455-3p regulates PAK2 expression by directly targeting the 3′-untranslated regions (3′UTRs) of PAK2 mRNA. IPA-3, a PAK inhibitor, inhibited cartilage degeneration due to OA. Moreover, suppressing PAK2 promoted R-Smad activation in the TGF/Smad signaling pathway in chondrocytes. Altogether, our results suggest that miR-455-3p promotes TGF-β/Smad signaling in chondrocytes and inhibits cartilage degeneration by directly suppressing PAK2. These results thus indicate that miR-455-3p and PAK2 are novel potential therapeutic agents and targets, respectively, for the treatment of OA.


2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


2021 ◽  
Vol 22 (11) ◽  
pp. 5590
Author(s):  
Clément Veys ◽  
Abderrahim Benmoussa ◽  
Romain Contentin ◽  
Amandine Duchemin ◽  
Emilie Brotin ◽  
...  

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


2021 ◽  
Author(s):  
Ding-Chao Zhu ◽  
Yi-Han Wang ◽  
Jia-Hao Lin ◽  
Zhi-Min Miao ◽  
Jia-Jing Xu ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and...


Author(s):  
Haitao Song ◽  
Yanwei Rao ◽  
Gang Zhang ◽  
Xiangbo Kong

MicroRNAs (miRNAs) are emerging as pivotal regulators in the development and progression of various cancers, including renal cell carcinoma (RCC). MicroRNA-384 (miR-384) has been found to be an important cancer-related miRNA in several types of cancers. However, the role of miR-384 in RCC remains unclear. In this study, we aimed to investigate the potential function of miR-384 in regulating tumorigenesis in RCC. Here we found that miR-384 was significantly downregulated in RCC tissues and cell lines. Overexpression of miR-384 significantly inhibited the growth and invasion of RCC cells, whereas inhibition of miR-384 had the opposite effects. Bioinformatic analysis and luciferase reporter assay showed that miR-384 directly targeted the 3′-untranslated region of astrocyte elevated gene 1 (AEG-1). Further data showed that miR-384 could negatively regulate the expression of AEG-1 in RCC cells. Importantly, miR-384 expression was inversely correlated with AEG-1 expression in clinical RCC specimens. Moreover, miR-384 regulates the activation of Wnt signaling. Overexpression of AEG-1 significantly reversed the antitumor effects of miR-384. Overall, these findings suggest that miR-384 suppresses the growth and invasion of RCC cells via downregulation of AEG-1, providing a potential therapeutic target for the treatment of RCC.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Wu ◽  
Zhixi Li ◽  
Youyu Wang ◽  
Xueming Ju ◽  
Rui Huang

Hepatocellular carcinoma (HCC) is the most common type of malignancy of the liver and has been reported as the third most frequent cause of cancer associated death worldwide. Accumulating evidence showed that the expression of miR-34a was abnormal in HCC patients; however, the role of miR-34a in HCC is not clear. In this study, we have observed low expression of the miR-34a in both HCC tissues and hepatoma cell line as compared to normal control. Further to investigate the role of miR-34a in HCC development, HepG2 cells were transfected with miR-34a mimic. Following transfection, miR-34a expression was significantly increased, which further repressed proliferation of HepG2 cells. Bioinformatics, Luciferase Reporter, RT-qPCR, and western blotting assays indicated that special AT-rich sequence-binding protein-2 (SATB2) is a direct target of miR-34a in HCC cells. There was a negative correlation between the expression levels of SATB2 and miR-34a. Investigation into the molecular mechanism indicated that miR-34a regulated cell proliferation through inhibiting SATB2. Therefore, the results of the present study may improve understanding regarding the role of miR-34a in regulating cell proliferation and contribute to the development of novel therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document