scholarly journals Effect of Hypoxia on Gene Expression in Cell Populations Involved in Wound Healing

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Sarah D’Alessandro ◽  
Andrea Magnavacca ◽  
Federica Perego ◽  
Marco Fumagalli ◽  
Enrico Sangiovanni ◽  
...  

Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.

2021 ◽  
Vol 14 (4) ◽  
pp. 301
Author(s):  
Yayoi Kawano ◽  
Viorica Patrulea ◽  
Emmanuelle Sublet ◽  
Gerrit Borchard ◽  
Takuya Iyoda ◽  
...  

Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.


2002 ◽  
Vol 190 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Takuro Kinbara ◽  
Fumiaki Shirasaki ◽  
Shigeru Kawara ◽  
Yutaka Inagaki ◽  
Benoit de Crombrugghe ◽  
...  

2021 ◽  
Author(s):  
Mary Yinghua Zhang ◽  
Shuyi Fang ◽  
Hongyu Gao ◽  
Xiaoli Zhang ◽  
Dongsheng Gu ◽  
...  

ABSTRACTWe report our discovery of an important player in the development of skin fibrosis, a hallmark of scleroderma. Scleroderma is a fibrotic disease, affecting 70,000 to 150,000 Americans. Fibrosis is a pathological wound healing process that produces an excessive extracellular matrix to interfere with normal organ function. Fibrosis contributes to nearly half of human mortality. Scleroderma has heterogeneous phenotypes, unpredictable outcomes, no validated biomarkers, and no effective treatment. Thus, strategies to slow down scleroderma progression represent an urgent medical need. While a pathological wound healing process like fibrosis leaves scars and weakens organ function, oral mucosa wound healing is a scarless process. After re-analyses of gene expression datasets from oral mucosa wound healing and skin fibrosis, we discovered that several pathways constitutively activated in skin fibrosis are transiently induced during oral mucosa wound healing process, particularly the amphiregulin (Areg) gene. Areg expression is upregulated ~10 folds 24hrs after oral mucosa wound but reduced to the basal level 3 days later. During bleomycin-induced skin fibrosis, a commonly used mouse model for skin fibrosis, Areg is up-regulated throughout the fibrogenesis and is associated with elevated cell proliferation in the dermis. To demonstrate the role of Areg for skin fibrosis, we used mice with Areg knockout, and found that Areg deficiency essentially prevents bleomycin-induced skin fibrosis. We further determined that bleomycin-induced cell proliferation in the dermis was not observed in the Areg null mice. Furthermore, we found that inhibiting MEK, a downstream signaling effector of Areg, by selumetinib also effectively blocked bleomycin-based skin fibrosis model. Based on these results, we concluded that the Areg-EGFR-MEK signaling axis is critical for skin fibrosis development. Blocking this signaling axis may be effective in treating scleroderma.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Fredrik Barrenas ◽  
Kevin Raehtz ◽  
Cuiling Xu ◽  
Lynn Law ◽  
Richard R. Green ◽  
...  

Abstract Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-β and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.


1999 ◽  
Vol 69 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Weimann ◽  
Hermann

The effect of calcium D-pantothenate on the migration, proliferation and protein synthesis of human dermal fibroblasts from three different donors was investigated. The migration of cells into a wounded area was dose-dependently stimulated by Ca D-pantothenate. The number of cells that migrated across the edge of the wound increased from 32 ± 7 cells/ mm without Ca D-pantothenate to 76 ± 2 cells/ mm with 100 mg/ml Ca D-pantothenate. Moreover, the mean migration distance per cell increased from 0.23 ± 0.05 mm to 0.33 ± 0.02 mm. The mean migration speed was calculated to be 10.5 mm/hour without and 15 mm/hour with Ca D-pantothenate. Cell proliferation was also dose-dependently stimulated. The final cell densities were 1.2 to 1.6-fold higher in cultures containing 100 mg/ml Ca D-pantothenate. The protein synthesis was modulated, since two unidentified proteins were more strongly expressed in pantothenate supplemented cultures. In conclusion, Ca D-pantothenate accelerates the wound healing process by increasing the number of migrating cells, their distance and hence their speed. In addition, cell division is increased and the protein synthesis changed. These results suggest that higher quantities of pantothenate are locally required to enhance wound healing.


2018 ◽  
Vol 315 (1) ◽  
pp. H71-H79 ◽  
Author(s):  
Alan J. Mouton ◽  
Osvaldo J. Rivera ◽  
Merry L. Lindsey

After myocardial infarction, remodeling of the left ventricle involves a wound-healing orchestra involving a variety of cell types. In order for wound healing to be optimal, appropriate communication must occur; these cells all need to come in at the right time, be activated at the right time in the right amount, and know when to exit at the right time. When this occurs, a new homeostasis is obtained within the infarct, such that infarct scar size and quality are sufficient to maintain left ventricular size and shape. The ideal scenario does not always occur in reality. Often, miscommunication can occur between infarct and remote spaces, across the temporal wound-healing spectrum, and across organs. When miscommunication occurs, adverse remodeling can progress to heart failure. This review discusses current knowledge gaps and recent development of the roles of inflammation and the extracellular matrix in myocardial infarction remodeling. In particular, the macrophage is one cell type that provides direct and indirect regulation of both the inflammatory and scar-forming responses. We summarize current research efforts focused on identifying biomarker indicators that reflect the status of each component of the wound-healing process to better predict outcomes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hongsen Bi ◽  
Hui Li ◽  
Chen Zhang ◽  
Yiqing Mao ◽  
Fangfei Nie ◽  
...  

Abstract Background A refractory wound is a typical complication of diabetes and is a common outcome after surgery. Current approaches have difficulty in improving wound healing. Recently, non-expanded stromal vascular fraction (SVF), which is derived from mature fat, has opened up new directions for the treatment of refractory wound healing. The aim of the current study is to systematically investigate the impact of SVF on wound healing, including the rate and characteristics of wound healing, ability of fibroblasts to migrate, and blood transport reconstruction, with a special emphasis on their precise molecular mechanisms. Methods SVF was isolated by digestion, followed by filtration and centrifugation, and then validated by immunocytochemistry, a MTS proliferation assay and multilineage potential analysis. A wound model was generated by creating 6-mm-diameter wounds, which include a full skin defect, on the backs of streptozocin-induced hyperglycemic mice. SVF or human adipose-derived stem cell (hADSC) suspensions were subcutaneously injected, and the wounds were characterized over a 9-day period by photography and measurements. A scratch test was used to determine whether changes in the migratory ability of fibroblasts occurred after co-culture with hADSCs. Angiogenesis was observed with human umbilical vein endothelial cells. mRNA from fibroblasts, endotheliocyte, and skin tissue were sequenced by high-throughput RNAseq, and differentially expressed genes, and pathways, potentially regulated by SVF or hADSCs were bioinformatically analyzed. Results Our data show that hADSCs have multiple characteristics of MSC. SVF and hADSCs significantly improved wound healing in hyperglycemic mice. hADSCs improve the migratory ability of fibroblasts and capillary structure formation in HUVECs. SVF promotes wound healing by focusing on angiogenesis and matrix remodeling. Conclusions Both SVF and hADSCs improve the function of fibroblast and endothelial cells, regulate gene expression, and promote skin healing. Various mechanisms likely are involved, including migration of fibroblasts, tubulogenesis of endothelial cells through regulation of cell adhesion, and cytokine pathways.


2018 ◽  
Vol 19 (12) ◽  
pp. 3862 ◽  
Author(s):  
Junhe Shi ◽  
May Barakat ◽  
Dandan Chen ◽  
Lin Chen

Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.


2014 ◽  
Vol 25 (6) ◽  
pp. 776-790 ◽  
Author(s):  
A. S. Menko ◽  
B. M. Bleaken ◽  
A. A. Libowitz ◽  
L. Zhang ◽  
M. A. Stepp ◽  
...  

Mock cataract surgery provides a unique ex vivo model for studying wound repair in a clinically relevant setting. Here wound healing involves a classical collective migration of the lens epithelium, directed at the leading edge by an innate mesenchymal subpopulation of vimentin-rich repair cells. We report that vimentin is essential to the function of repair cells as the directors of the wound-healing process. Vimentin and not actin filaments are the predominant cytoskeletal elements in the lamellipodial extensions of the repair cells at the wound edge. These vimentin filaments link to paxillin-containing focal adhesions at the lamellipodial tips. Microtubules are involved in the extension of vimentin filaments in repair cells, the elaboration of vimentin-rich protrusions, and wound closure. The requirement for vimentin in repair cell function is revealed by both small interfering RNA vimentin knockdown and exposure to the vimentin-targeted drug withaferin A. Perturbation of vimentin impairs repair cell function and wound closure. Coimmunoprecipitation analysis reveals for the first time that myosin IIB is associated with vimentin, linking vimentin function in cell migration to myosin II motor proteins. These studies reveal a critical role for vimentin in repair cell function in regulating the collective movement of the epithelium in response to wounding.


2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


Sign in / Sign up

Export Citation Format

Share Document