scholarly journals Phytomedicines Used for Diabetes Mellitus in Ghana: A Systematic Search and Review of Preclinical and Clinical Evidence

2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Michael Buenor Adinortey ◽  
Rosemary Agbeko ◽  
Daniel Boison ◽  
William Ekloh ◽  
Lydia Enyonam Kuatsienu ◽  
...  

Background. Available data indicate that diabetes mellitus leads to elevated cost of healthcare. This imposes a huge economic burden on households, societies, and nations. As a result many Ghanaians, especially rural folks, resort to the use of phytomedicine, which is relatively less expensive. This paper aims at obtaining information on plants used in Ghana to treat diabetes mellitus, gather and present evidence-based data available to support their uses and their mechanisms of action, and identify areas for future research.Method. A catalogue of published textbooks, monographs, theses, and peer-reviewed articles of plants used in Ghanaian traditional medicine between 1987 and July 2018 for managing diabetes mellitus was obtained and used.Results. The review identified 76 plant species belonging to 45 families that are used to manage diabetes mellitus. Leaves were the part of the plants frequently used for most preparation (63.8%) and were mostly used as decoctions. Majority of the plants belonged to the Euphorbiaceae, Lamiaceae, Asteraceae, and Apocynaceae families. Pharmacological data were available on 23 species that have undergonein vitrostudies. Forty species have been studied usingin vivoanimal models. Only twelve plants and their bioactive compounds were found with data on both preclinical and clinical studies. The records further indicate that medicinal plants showing antidiabetic effects did so via biochemical mechanisms such as restitution of pancreaticβ-cell function, improvement in insulin sensitivity by receptors, stimulating rate of insulin secretion, inhibition of liver gluconeogenesis, enhanced glucose absorption, and inhibition of G-6-Pase,α-amylase, andα-glucosidase activities.Conclusion. This review contains information on medicinal plants used to manage diabetes mellitus, including their pharmacological properties and mechanisms of action as well as models used to investigate them. It also provides gaps that can form the basis for further investigations and development into useful medications for effective treatment of diabetes mellitus.

2021 ◽  
Vol 15 ◽  
Author(s):  
Elliott Carthy ◽  
Tommas Ellender

The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette’s syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ya-yi Jiang ◽  
Jia-cheng Shui ◽  
Bo-xun Zhang ◽  
Jia-wei Chin ◽  
Ren-song Yue

Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Serawit Deyno ◽  
Kassahun Eneyew ◽  
Sisay Seyfe ◽  
Elias Wondim

Abstract Background Despite tremendous developments in synthetic medicine, medicinal plants are still commonly used for the management of diabetes mellitus. This study synthesized scientific evidence on commonly used medicinal plants for the management of diabetes mellitus (DM) in Ethiopia. Methods Databases (PubMed, Cochrane, CINAHL and Google Scholar) have been thoroughly sought and evidence was synthesized. Results Thirty studies conducted anti-diabetic activities studies on 19 medicinal plants in Ethiopia. Most of the studies were in vivo studies (25). Others include; clinical study (1), in vitro studies (2), and both in vivo and in vitro study (2). Trigonella foenum-graecum L., clinical study, showed an improved lipid profile in type II diabetic patients. Comparable blood sugar level (BSL) lowering effect to glibenclimide was observed with Persea Americana and Moringa stenopetala. Noteworthy in vitro half maximal inhibitory concentration (IC 50) of Aloe megalacantha B and Aloe monticola R were observed. Animal model studies demonstrated the relative safety of the plants extract and phytochemistry studies showed various components. Conclusion Medicinal plants used for management of diabetes mellitus in Ethiopia are worthy for further study for pharmacologically active ingredients and clinical evaluation.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4796
Author(s):  
Anna E. Kaiser ◽  
Mojdeh Baniasadi ◽  
Derrek Giansiracusa ◽  
Matthew Giansiracusa ◽  
Michael Garcia ◽  
...  

There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.


2021 ◽  
Vol 118 (17) ◽  
pp. e2012894118
Author(s):  
Rei Nishimoto ◽  
Sandra Derouiche ◽  
Kei Eto ◽  
Aykut Deveci ◽  
Makiko Kashio ◽  
...  

Microglia maintain central nervous system homeostasis by monitoring changes in their environment (resting state) and by taking protective actions to equilibrate such changes (activated state). These surveillance and protective roles both require constant movement of microglia. Interestingly, induced hypothermia can reduce microglia migration caused by ischemia, suggesting that microglia movement can be modulated by temperature. Although several ion channels and transporters are known to support microglia movement, the precise molecular mechanism that regulates temperature-dependent movement of microglia remains unclear. Some members of the transient receptor potential (TRP) channel superfamily exhibit thermosensitivity and thus are strong candidates for mediation of this phenomenon. Here, we demonstrate that mouse microglia exhibit temperature-dependent movement in vitro and in vivo that is mediated by TRPV4 channels within the physiological range of body temperature. Our findings may provide a basis for future research into the potential clinical application of temperature regulation to preserve cell function via manipulation of ion channel activity.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Rodolfo Abarca-Vargas ◽  
Vera L. Petricevich

This review discusses the current knowledge of the phytochemistry and in vitro and in vivo evaluations carried out using the extracts and, where appropriate, the main active components isolated from the genus Bougainvillea. Out of 18 species, most phytochemical, pharmacological, and toxicological studies focused on four species with different cultivars and one hybrid. Some plants are used for the treatment of various health disorders. Numerous phytochemical investigations of plants in this genus confirm the presence of aliphatic hydrocarbons, fatty acids, fatty alcohols, volatile compounds, phenolic compounds, peltogynoids, flavonoids, phytosterols, terpenes, carbohydrates, and betalains. Various studies have confirmed that these extracts or active substances that were isolated from the genus Bougainvillea have multiple pharmacological activities. Some species of Bougainvillea have emerged as sources of traditional medicine in human health. More studies of the phytochemical, pharmacological, and toxicological properties and their mechanisms of action, safety, and efficacy in all Bougainvillea species, cultivars, and hybrids are advisable for future research.


2021 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
Jelena Aramabašić Jovanović ◽  
Mirjana Mihailović ◽  
Aleksandra Uskoković ◽  
Nevena Grdović ◽  
Svetlana Dinić ◽  
...  

Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries’ economies. Currently, there are many commercial hypoglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects and without a sufficient capacity to significantly alter the course of diabetic complications. Over many centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mellitus, especially polysaccharides and terpenoids derived from various mushroom species. This review summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling pathways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion, mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various mechanisms and can be used as supportive candidates for prevention and control of diabetes in the future.


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S120-S121
Author(s):  
TH. LINN ◽  
H. GERMANN ◽  
B. HERING ◽  
R. BRETZEL ◽  
K. FEDERLIN

2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


Sign in / Sign up

Export Citation Format

Share Document