scholarly journals Quercetin Inhibits Inflammatory Response Induced by LPS from Porphyromonas gingivalis in Human Gingival Fibroblasts via Suppressing NF-κB Signaling Pathway

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Gang Xiong ◽  
Wansheng Ji ◽  
Fei Wang ◽  
Fengxiang Zhang ◽  
Peng Xue ◽  
...  

Quercetin, a natural flavonol existing in many food resources, has been reported to be an effective antimicrobial and anti-inflammatory agent for restricting the inflammation in periodontitis. In this study, we aimed to investigate the anti-inflammatory effects of quercetin on Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide- (LPS-) stimulated human gingival fibroblasts (HGFs). HGFs were pretreated with quercetin prior to LPS stimulation. Cell viability was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), along with chemokine interleukin-8 (IL-8), were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IκBα, p65 subunit of nuclear factor-kappa B (NF-κB), peroxisome proliferator-activated receptor-γ (PPAR-γ), liver X receptor α (LXRα), and Toll-like receptor 4 (TLR4) were measured by real-time quantitative PCR (RT-qPCR). The protein levels of IκBα, p-IκBα, p65, p-p65, PPAR-γ, LXRα, and TLR4 were characterized by Western blotting. Our results demonstrated that quercetin inhibited the LPS-induced production of IL-1β, IL-6, IL-8, and TNF-α in a dose-dependent manner. It also suppressed LPS-induced NF-κB activation mediated by TLR4. Moreover, the anti-inflammatory effects of quercetin were reversed by the PPAR-γ antagonist of GW9662. In conclusion, these results suggested that quercetin attenuated the production of IL-1β, IL-6, IL-8, and TNF-α in P. gingivalis LPS-treated HGFs by activating PPAR-γ which subsequently suppressed the activation of NF-κB.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 652 ◽  
Author(s):  
Ju-Sik Park ◽  
John O. Holloszy ◽  
Kijin Kim ◽  
Jin-Ho Koh

This study aimed to investigate the long-term effects of training intervention and resting on protein expression and stability of peroxisome proliferator-activated receptor β/δ (PPARβ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), glucose transporter type 4 (GLUT4), and mitochondrial proteins, and determine whether glucose homeostasis can be regulated through stable expression of these proteins after training. Rats swam daily for 3, 6, 9, 14, or 28 days, and then allowed to rest for 5 days post-training. Protein and mRNA levels were measured in the skeletal muscles of these rats. PPARβ was overexpressed and knocked down in myotubes in the skeletal muscle to investigate the effects of swimming training on various signaling cascades of PGC-1α transcription, insulin signaling, and glucose uptake. Exercise training (Ext) upregulated PPARβ, PGC-1α, GLUT4, and mitochondrial enzymes, including NADH-ubiquinone oxidoreductase (NUO), cytochrome c oxidase subunit I (COX1), citrate synthase (CS), and cytochrome c (Cyto C) in a time-dependent manner and promoted the protein stability of PPARβ, PGC-1α, GLUT4, NUO, CS, and Cyto C, such that they were significantly upregulated 5 days after training cessation. PPARβ overexpression increased the PGC-1α protein levels post-translation and improved insulin-induced signaling responsiveness and glucose uptake. The present results indicate that Ext promotes the protein stability of key mitochondria enzymes GLUT4, PGC-1α, and PPARβ even after Ext cessation.


2007 ◽  
Vol 194 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Masaya Takeda ◽  
Fumio Otsuka ◽  
Hiroyuki Otani ◽  
Kenichi Inagaki ◽  
Tomoko Miyoshi ◽  
...  

Involvement of peroxisome proliferator-activated receptor-γ (PPAR-γ ) activation and bone morphogenetic protein (BMP) signaling in regulating cell proliferation and hormonal production of pituitary tumors has been reported, although the underlying mechanism remains poorly understood. Here, we investigated regulatory roles of PPARα and PPARγ in gonadotropin transcription and cell mitosis modulated by pituitary activin/BMP systems using a mouse gonadotropinoma cell line Lβ T2, which expresses activin/BMP receptors, transcription factor Smads, PPARα , and PPARγ . In Lβ T2 cells, BMP signaling shown by Smad1/5/8 phosphorylation and Id-1 transcription was readily activated by BMPs. A PPARγ agonist, pioglitazone significantly reduced BMP-induced DNA synthesis by Lβ T2; whereas the PPARα agonist, fenofibric acid, did not. In accordance with the effects on cell mitosis, pioglitazone but not fenofibric acid significantly decreased BMP-induced Id-1-Luc activation. Neither fenofibric acid nor pioglitazone affected activin signaling detected by (CAGA)9-Luc activity. Both PPARα and PPARγ ligands directly suppressed transcriptional activities of FSHβ , LHβ , and GnRHR. Activation of PPARα and PPARγ increased mRNA levels of follistatin, but did not affect the expression of follistatin-related gene. Thus, PPAR agonists not only directly suppress gonadotropin transcription and BMP signaling, but also inhibit the biological actions of activins which facilitate gonadotropin transcription through upregulating follistatin expression. In addition, pioglitazone increased BMP ligands mRNA, but decreased activin-β B mRNA in Lβ T2 cells. Collectively, PPAR activation differentially regulates gonadotrope cell proliferation and gonadotropin transcription in a ligand-dependent manner.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Makoto Ayaori ◽  
Masatsune Ogura ◽  
Kazuhiro Nakaya ◽  
Tetsuya Hisada ◽  
Shun-ichi Takiguchi ◽  
...  

ATP binding cassette transporter G1 (ABCG1), which is expressed in macrophages, has been implicated in the efflux of cholesterol to high density lipoprotein. Peroxisome proliferator-activated receptor γ (PPARγ) has been reported to be involved in cholesterol efflux from macrophages, and increased expression of ABCG1 via liver receptor X (LXR)-dependent and independent pathways. However, the mechanisms by which ABCG1 expression is increased by PPARγ have not been fully characterized. We observed that pioglitazone, a PPARγ ligand, increases cholesterol efflux from THP-1 macrophages, as well as ABCG1 mRNA and protein levels. Treatment with actinomycin D abolished the inducible effect of pioglitazone on ABCG1, indicating that pioglitazone transcriptionally activated ABCG1 expression. To clarify how pioglitazone regulates ABCG1 expression, we investigated promoter activity using reporter constructs containing human ABCG1 promoter A and B (located upstream of exon 1 and 5, respectively), with or without mutated LXR-binding sites. The results indicated that pioglitazone activated both promoters in an LXR-dependent manner. We also observed that pioglitazone increased two major transcripts driven by promoter A and B using specific primers for each transcript. To determine whether PPARγ and LXRα were involved in these effects of pioglitazone, we performed siRNA-knockdown of PPARγ and LXRα in macrophages, which resulted in 75% and 91% decreases in PPARγ and LXRα mRNA levels, respectively. PPARγ and LXRα-knockdown, respectively, completely or partially abolished pioglitazone-induced ABCG1 expression. In conclusion, these results suggest that pioglitazone transcriptionally increased ABCG1 expression in macrophages by activating dual promoters in an LXR-dependent manner. Further studies are needed to assess LXR-independent mechanisms for the stimulatory effect of pioglitazone on ABCG1.


2006 ◽  
Vol 290 (5) ◽  
pp. E916-E924 ◽  
Author(s):  
Juan Kong ◽  
Yan Chun Li

We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24–48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPβ induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPα, peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4–8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARγ antagonist; conversely, hVDR partially suppresses the transacting activity of PPARγ but not of C/EBPβ or C/EBPα. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPα and PPARγ mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPα and PPARγ upregulation, antagonization of PPARγ activity, and stabilization of the inhibitory VDR protein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paulo José Basso ◽  
Helioswilton Sales-Campos ◽  
Viviani Nardini ◽  
Murillo Duarte-Silva ◽  
Vanessa Beatriz Freitas Alves ◽  
...  

The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Takefumi Kimura ◽  
Takero Nakajima ◽  
Yuji Kamijo ◽  
Naoki Tanaka ◽  
Lixuan Wang ◽  
...  

Sulfatides are one of the major sphingoglycolipids in mammalian serum and are synthesized and secreted mainly from the liver as a component of lipoproteins. Recent studies revealed a protective role for serum sulfatides against arteriosclerosis and hypercoagulation. Although peroxisome proliferator-activated receptor (PPAR)αhas important functions in hepatic lipoprotein metabolism, its association with sulfatides has not been investigated. In this study, sulfatide levels and the expression of enzymes related to sulfatide metabolism were examined using wild-type (+/+),Ppara-heterozygous (+/−), andPpara-null (−/−) mice given a control diet or one containing 0.1% fenofibrate, a clinically used hypolipidemic drug and PPARαactivator. Fenofibrate treatment increased serum and hepatic sulfatides inPpara(+/+) and (+/−) mice through a marked induction of hepatic cerebroside sulfotransferase (CST), a key enzyme in sulfatide synthesis, in a PPARα-dependent manner. Furthermore, increases in CST mRNA levels were correlated with mRNA elevations of several known PPARαtarget genes, and such changes were not observed for other sulfatide-metabolism enzymes in the liver. These results suggest that PPARαactivation enhances hepatic sulfatide synthesis via CST induction and implicate CST as a novel PPARαtarget gene.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 648 ◽  
Author(s):  
Haeyeop Kim ◽  
Kon Kuk Shin ◽  
Han Gyung Kim ◽  
Minkyeong Jo ◽  
Jin Kyeong Kim ◽  
...  

Inflammation is a complex protective response of body tissues to harmful stimuli. Acute inflammation can progress to chronic inflammation, which can lead to severe disease. Therefore, this research focuses on the development of anti-inflammatory drugs, and natural extracts have been explored as potential agents. No study has yet examined the inflammation-associated pharmacological activity of Potentilla glabra Var. mandshurica (Maxim.) Hand.-Mazz ethanol extract (Pg-EE). To examine the mechanisms by which Pg-EE exerts anti-inflammatory effects, we studied its activities in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells and an HCl/EtOH-induced gastritis model. LPS-triggered nitric oxide (NO) release and mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in RAW264.7 cells were suppressed by Pg-EE in a dose-dependent manner. Using a luciferase assay and western blot assay, we found that the NF-κB pathway was inhibited by Pg-EE, particularly by the decreased level of phosphorylated proteins of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunits (p65 and p50), inhibitor of kappa B alpha (IκBα), p85, and Src. Using an overexpression strategy, cellular thermal shift assay, and immunoprecipitation analysis, we determined that the anti-inflammatory effect of Pg-EE was mediated by the inhibition of Src. Pg-EE further showed anti-inflammatory effects in vivo in the HCl/EtOH-induced gastritis mouse model. In conclusion, Pg-EE exerts anti-inflammatory activities by targeting Src in the NF-κB pathway, and these results suggest that Pg-EE could be used as an anti-inflammatory herbal medicine.


2009 ◽  
Vol 297 (1) ◽  
pp. E174-E183 ◽  
Author(s):  
A. H. V. Remels ◽  
R. C. J. Langen ◽  
H. R. Gosker ◽  
A. P. Russell ◽  
F. Spaapen ◽  
...  

Skeletal muscle pathology associated with a chronic inflammatory disease state (e.g., skeletal muscle atrophy and insulin resistance) is a potential consequence of chronic activation of NF-κB. It has been demonstrated that peroxisome proliferator-activated receptors (PPARs) can exert anti-inflammatory effects by interfering with transcriptional regulation of inflammatory responses. The goal of the present study, therefore, was to evaluate whether PPAR activation affects cytokine-induced NF-κB activity in skeletal muscle. Using C2C12 myotubes as an in vitro model of myofibers, we demonstrate that PPAR, and specifically PPARγ, activation potently inhibits inflammatory mediator-induced NF-κB transcriptional activity in a time- and dose-dependent manner. Furthermore, PPARγ activation by rosiglitazone strongly suppresses cytokine-induced transcript levels of the NF-κB-dependent genes intracellular adhesion molecule 1 (ICAM-1) and CXCL1 (KC), the murine homolog of IL-8, in myotubes. To verify whether muscular NF-κB activity in human subjects is suppressed by PPARγ activation, we examined the effect of 8 wk of rosiglitazone treatment on muscular gene expression of ICAM-1 and IL-8 in type 2 diabetes mellitus patients. In these subjects, we observed a trend toward decreased basal expression of ICAM-1 mRNA levels. Subsequent analyses in cultured myotubes revealed that the anti-inflammatory effect of PPARγ activation is not due to decreased RelA translocation to the nucleus or reduced RelA DNA binding. These findings demonstrate that muscle-specific inhibition of NF-κB activation may be an interesting therapeutic avenue for treatment of several inflammation-associated skeletal muscle abnormalities.


2021 ◽  
Vol 34 (2) ◽  
pp. 98-103
Author(s):  
Jessica Narvaez-Flores ◽  
Gabriela Vilar-Pineda ◽  
Laura Acosta-Torres ◽  
Rene Garcia-Contreras

Chitosan is a biopolymer with bactericidal/bacteriostatic effect, biocompatible and biodegradable. It has been used in tissue engineering to replace tissues partially or completely by releasing bioactive materials or influencing cell growth, usually in regenerative medicine and dentistry. The aim of this study was to evaluate the cytotoxic and anti-inflammatory effect of chitosan alone or with hemostatic gelatin (Spongostand®) in cultures of human pulp cells (HPC), human gingival fibroblasts (HGF) and mouse pre-osteoblasts (MC3T3-E1, ATCC). HPC and HGF were isolated from patients. Cells were subcultured in DMEM. Chitosan was inoculated at different concentrations (0-0.5%) and hemostatic gelatins impregnated with chitosan (0.19%) were placed directly in the presence of cells and incubated for 24 hours. Cell viability was determined by MTT method and mean cytotoxic concentration (CC50) was calculated from the dose-response curve. Anti-inflammatory effect was calculated from the in vitro gingivitis model induced with interleukin 1beta (IL-1β) in HGF and protein detection. The data were subjected to Shapiro-Wilk, Kruskal-Wallis and Mann-Whitney tests. Experiments were performed in triplicate of three independent assays. Cell viability of HPC, HGF and MC3T3-E1 in contact with chitosan decreased significantly (p<0.05). The HPC were the most sensitive (CC50= 0.18%), followed by HGF (CC50=0.18%) and MC3T3-E1 (CC50= 0.19%). The cytotoxicity of gelatins impregnated with chitosan decreased cell viability of HGF and HPC by 11% and 5%, respectively. The proinflammatory effect was reduced significantly in the gingivitis model. To conclude, chitosan induces moderate cytotoxic effects alone or with hemostatic gelatin at 0.19%, in dose-dependent manner, with anti-inflammatory effects on human gingival fibroblasts. The use of chitosan as a biomaterial can be an excellent choice for use in regenerative dentistry.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jae-Yeo Park ◽  
Younghwa Kim ◽  
Jee Ae Im ◽  
Seungkwon You ◽  
Hyangkyu Lee

Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptorγ(PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), andδ(C/EBPδ) in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR) signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR and forkhead box protein O1 (Foxo1). These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis.


Sign in / Sign up

Export Citation Format

Share Document