scholarly journals Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 648 ◽  
Author(s):  
Haeyeop Kim ◽  
Kon Kuk Shin ◽  
Han Gyung Kim ◽  
Minkyeong Jo ◽  
Jin Kyeong Kim ◽  
...  

Inflammation is a complex protective response of body tissues to harmful stimuli. Acute inflammation can progress to chronic inflammation, which can lead to severe disease. Therefore, this research focuses on the development of anti-inflammatory drugs, and natural extracts have been explored as potential agents. No study has yet examined the inflammation-associated pharmacological activity of Potentilla glabra Var. mandshurica (Maxim.) Hand.-Mazz ethanol extract (Pg-EE). To examine the mechanisms by which Pg-EE exerts anti-inflammatory effects, we studied its activities in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells and an HCl/EtOH-induced gastritis model. LPS-triggered nitric oxide (NO) release and mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in RAW264.7 cells were suppressed by Pg-EE in a dose-dependent manner. Using a luciferase assay and western blot assay, we found that the NF-κB pathway was inhibited by Pg-EE, particularly by the decreased level of phosphorylated proteins of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunits (p65 and p50), inhibitor of kappa B alpha (IκBα), p85, and Src. Using an overexpression strategy, cellular thermal shift assay, and immunoprecipitation analysis, we determined that the anti-inflammatory effect of Pg-EE was mediated by the inhibition of Src. Pg-EE further showed anti-inflammatory effects in vivo in the HCl/EtOH-induced gastritis mouse model. In conclusion, Pg-EE exerts anti-inflammatory activities by targeting Src in the NF-κB pathway, and these results suggest that Pg-EE could be used as an anti-inflammatory herbal medicine.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6275
Author(s):  
Seung A Kim ◽  
Jieun Oh ◽  
Se Rin Choi ◽  
Choong Hwan Lee ◽  
Byoung-Hee Lee ◽  
...  

An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-kB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.


2015 ◽  
Vol 93 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Yu Zhang ◽  
Ruhong Yan ◽  
Yae Hu

Oxymatrine (OMT) is the quinolizidine alkaloid extracted from the Chinese herb Sophora flavescens Ait. that has many pharmacological effects and is used for the treatment of some inflammatory diseases. In this study, RAW264.7 cells and THP-1 differentiated macrophages were pretreated with various concentrations of OMT at 2 h prior to treatment with lipopolysaccharide (LPS) (1.0 μg/mL) for different durations. We detected the anti-inflammatory effect of OMT in LPS-stimulated macrophages and investigated the molecular mechanism. We showed that OMT pretreatment significantly inhibited the LPS-induced secretion of nitric oxide (NO), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in supernatant, attenuated the mRNA levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and Toll-like receptor 4 (TLR4), increased TLR4 and phosphorylation of inhibitor of kappa B-alpha (p-IBα) in cytosol, and decreased the nuclear level of nuclear factor-κB (NF-κB) p65 in macrophages. In conclusion, OMT exerts anti-inflammatory properties in LPS-stimulated macrophages by down-regulating the TLR4/NF-κB pathway.


2019 ◽  
Vol 47 (07) ◽  
pp. 1571-1588
Author(s):  
Hwa-Jeong Lee ◽  
Jung Up Park ◽  
Rui Hong Guo ◽  
Bok Yun Kang ◽  
In-Kyu Park ◽  
...  

Canavalia gladiata, known as sword bean, has been used as a Chinese traditional medicine for anti-inflammatory effects. However, the action mechanisms of sword bean have not yet been clearly defined. In the present study, the whole parts of a ripened sword bean (RSB) and the green sword bean (GSB) containing bean pod were extracted with ethanol by reflux extraction. The two crude extracts (RSBE and GSBE) from RSB and GSB were validated by a liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis of gallic acid as a reference chemical. The anti-inflammatory effects of two sword bean extracts were extensively investigated using LPS-stimulated macrophage cells. First, RSBE and GSBE significantly inhibited the production of pro-inflammatory mediators, such as tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-6 (IL-6), prostaglandinE2 (PGE2), and nitric oxide (NO) in LPS-induced RAW264.7 cells. RSBE and GSBE showed no cytotoxicity to RAW264.7 cells and mouse peritoneal macrophage cells. In addition, the overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) induced by LPS in RAW264.7 cells was significantly decreased by RSBE and GSBE. Western blotting and immunostaining analysis showed that RSBE and GSBE inhibited the nuclear translocation of NF-[Formula: see text]B subunits, which correlated with the inhibitory effects on inhibitor kappa B (I[Formula: see text]B) degradation. In dextran sulfated sodium (DSS)-induced colitis mice model, RSBE restored body weight, colon length, and the levels of pro-inflammatory cytokines, such as TNF-[Formula: see text], IL-6, interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interferon-[Formula: see text] (IFN-[Formula: see text]). In addition, RSBE significantly suppressed the expression of COX-2, iNOS, and NF-[Formula: see text]B.


2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2018 ◽  
Vol 11 (4) ◽  
pp. 1755-1761
Author(s):  
Eun-Jin Yang ◽  
Sungchan Jang ◽  
Kwang Hee Hyun ◽  
Eun-Young Jung ◽  
Seung-Young Kim ◽  
...  

The anti-inflammatory activity and non-toxicity of Sonchus oleraceus extract (J6) were tested by measuring its effect on the levels of nitric oxide (NO), prostaglandin E2 (PGE2), and the pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We treated the RAW264.7 cells with various concentrations (50, 100, or 200 μg/mL) of J6. Our results showed that J6 inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a concentration-dependent manner, without compromising cell viability. In addition, we provided supporting evidence that the inhibitory activity of J6 on the production of NO and PGE2 occurred via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. Our findings suggest that J6 is a new source for anti-inflammatory drugs and ingredients for healthcare products that include functional cosmetics.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Akash Ahujaa ◽  
Mi-Yeon Kim ◽  
Jae Youl Cho

Protium javanicum Burm. f. is a medicinal plant used in traditional medicine. Gum and oleoresins from this plant have been used as anti-inflammatory agents for treating ulcers, headaches, eyelid inflammation, and rheumatic pain. However, its anti-inflammatory mechanism of action is still unknown. To better understand the mechanism, we used lipopolysaccharide- (LPS-) treated RAW264.7 cells to measure inflammatory mediators with the Griess assay and to identify target signaling molecules by immunoblot analysis. In this study, we report that the Protium javanicum methanol extract (Pj-ME) plays an important role in suppressing nitric oxide (NO) levels without cytotoxicity. The effect of Pj-ME in LPS-induced expression leads to reduced inflammatory cytokine expression, specifically inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor (TNF-α). Pj-ME significantly inhibited LPS-induced protein expression of the nuclear factor-kappa B (NF-κB) signaling pathway in a time-dependent manner. Syk and Src were identified as putative signaling molecules of Pj-ME-mediated anti-inflammatory activity, which were inhibited by Pj-ME. We demonstrated that Pj-ME controls the STAT3 signaling pathway by suppressing STAT3 and JAK phosphorylation and also downregulates the gene expression of IL-6. Therefore, these results elucidate Pj-ME as a novel anti-inflammatory naturally derived drug with anti-inflammatory and antioxidant properties which may be subject to therapeutic and prognostic relevance.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Gang Xiong ◽  
Wansheng Ji ◽  
Fei Wang ◽  
Fengxiang Zhang ◽  
Peng Xue ◽  
...  

Quercetin, a natural flavonol existing in many food resources, has been reported to be an effective antimicrobial and anti-inflammatory agent for restricting the inflammation in periodontitis. In this study, we aimed to investigate the anti-inflammatory effects of quercetin on Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide- (LPS-) stimulated human gingival fibroblasts (HGFs). HGFs were pretreated with quercetin prior to LPS stimulation. Cell viability was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), along with chemokine interleukin-8 (IL-8), were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IκBα, p65 subunit of nuclear factor-kappa B (NF-κB), peroxisome proliferator-activated receptor-γ (PPAR-γ), liver X receptor α (LXRα), and Toll-like receptor 4 (TLR4) were measured by real-time quantitative PCR (RT-qPCR). The protein levels of IκBα, p-IκBα, p65, p-p65, PPAR-γ, LXRα, and TLR4 were characterized by Western blotting. Our results demonstrated that quercetin inhibited the LPS-induced production of IL-1β, IL-6, IL-8, and TNF-α in a dose-dependent manner. It also suppressed LPS-induced NF-κB activation mediated by TLR4. Moreover, the anti-inflammatory effects of quercetin were reversed by the PPAR-γ antagonist of GW9662. In conclusion, these results suggested that quercetin attenuated the production of IL-1β, IL-6, IL-8, and TNF-α in P. gingivalis LPS-treated HGFs by activating PPAR-γ which subsequently suppressed the activation of NF-κB.


2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Liao ◽  
Yuanping Li ◽  
Xiaoru Zhai ◽  
Bin Zheng ◽  
Linda Banbury ◽  
...  

Objective. Safflower has antioxidant and anti-inflammatory activities. The two forms of preparations for safflower which are widely used in China are injection and decoction. The first step of the process for preparing an injection involves extracting safflower with water, which actually yields a decoction. This study is intended to investigate how the preparation process influences the anti-inflammatory activity of safflower in vitro. Methods. Five samples, including a decoction (sample 1) and an injection (sample 5) of safflower, were prepared according to the national standard WS3-B-3825-98-2012 and were analyzed by the oxygen radical absorbance capacity (ORAC) method and the 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) method for comparison. Sample 1 and sample 5 were further tested by the Griess assay and ELISA for their effects on nitric oxide (NO) production and interleukin- (IL-) 1β content in lipopolysaccharide- (LPS-) activated RAW264.7 cells. The protein and mRNA levels of inducible nitric oxide synthase (iNOS) and IL-1β were measured by Western blotting and real-time quantitative PCR. Results. Sample 5 showed a significantly higher ORAC value and a lower half inhibitory concentration (IC50) for DPPH scavenging activity as compared to the other four samples (p<0.05). LPS significantly upregulated the mRNA and protein expressions of iNOS and IL-1β as compared to the solvent control (p<0.01). As compared to sample 1, sample 5 significantly decreased NO production, iNOS protein expression, and the contents of IL-1β mRNA and IL-1β protein at both 100 μg/ml and 200 μg/ml (all: p<0.05) and significantly downregulated iNOS mRNA expression at 100 μg/ml (p<0.05). Conclusions. Results of this study demonstrate that the safflower injection prepared according to the national standard has a significant effect of suppressing protein and mRNA expressions of iNOS and IL-1β as compared to its traditional decoction.


2021 ◽  
Vol 22 (15) ◽  
pp. 8120
Author(s):  
Dahae Lee ◽  
Seoung Rak Lee ◽  
Ki Sung Kang ◽  
Ki Hyun Kim

The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14–22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKβ, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.


Sign in / Sign up

Export Citation Format

Share Document