scholarly journals Astragaloside IV Attenuates Myocardial Ischemia-Reperfusion Injury from Oxidative Stress by Regulating Succinate, Lysophospholipid Metabolism, and ROS Scavenging System

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Miaomiao Jiang ◽  
Jingyu Ni ◽  
Yuanlin Cao ◽  
Xiaoxue Xing ◽  
Qian Wu ◽  
...  

Astragaloside IV is one of the main active ingredients isolated from Astragalus membranaceus. Here we confirmed its protective effect against cardiac ischemia-reperfusion (I/R) injury and aimed to investigate the potential molecular mechanisms involved. Pretreatment of ex vivo and in vivo I/R-induced rat models by astragaloside IV significantly prevented the ratio of myocardium infarct size, systolic and diastolic dysfunction, and the production of creatine kinase and lactate dehydrogenase. Metabolic analyses showed that I/R injury caused a notable reduction of succinate and elevation of lysophospholipids, indicating excessive reactive oxygen species (ROS) generation driven by succinate’s rapid reoxidization and glycerophospholipid degradation. Molecular validation mechanistically revealed that astragaloside IV stimulated nuclear factor (erythroid-derived 2)-like 2 (Nrf2) released from Kelch-like ECH-associated protein 1 (Keap1) and translocated to the nucleus to combine with musculoaponeurotic fibrosarcoma (Maf) to initiate the transcription of antioxidative gene heme oxygenase-1 (HO-1), which performed a wide range of ROS scavenging processes against pathological oxidative stress in the hearts. As expected, increasing succinate and decreasing lysophospholipid levels were observed in the astragaloside IV-pretreated group compared with the I/R model group. These results suggested that astragaloside IV ameliorated myocardial I/R injury by modulating succinate and lysophospholipid metabolism and scavenging ROS via the Nrf2 signal pathway.

2008 ◽  
Vol 294 (2) ◽  
pp. L255-L265 ◽  
Author(s):  
James C. Lee ◽  
Faiz Bhora ◽  
Jing Sun ◽  
Guanjun Cheng ◽  
Evguenia Arguiri ◽  
...  

Dietary flaxseed (FS) is a nutritional whole grain with high contents of omega-3 fatty acids and lignans with anti-inflammatory and antioxidant properties. We evaluated FS in a murine model of pulmonary ischemia-reperfusion injury (IRI) by dietary supplementation of 0% (control) or 10% (treatment) FS before IRI. Mice fed 0% FS undergoing IRI had a significant decrease in arterial oxygenation (PaO2) and a significant increase in bronchoalveolar lavage (BAL) protein compared with sham-operated mice. However, mice fed 10% FS undergoing IRI had a significant improvement in both PaO2 and BAL protein compared with mice fed 0% FS undergoing IRI. In addition, oxidative lung damage was decreased in 10% FS-supplemented mice undergoing IRI, as assessed by malondialdehyde levels. Immunohistochemical staining of lungs for iPF2α-III F2 isoprostane, a measure of lipid oxidation, was diminished. FS-supplemented mice had less reactive oxygen species (ROS) release from the vascular endothelium in lungs in an ex vivo model of IRI, and alveolar macrophages isolated from FS-fed mice had significantly reduced ROS generation in response to oxidative burst. Pulmonary microvascular endothelial cells produced less ROS in a flow cessation model of ischemia when preincubated with purified FS lignan metabolites. Pharmacological inhibition of heme oxygenase-1 (HO-1) resulted in only a partial reduction of FS protection in the same model. We conclude that dietary FS is protective against IRI in an experimental murine model and that FS affects ROS generation and ROS detoxification via pathways not limited to upregulation of antioxidant enzymes such as HO-1.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


2021 ◽  
Vol 22 (12) ◽  
pp. 6399
Author(s):  
Ioanna Papatheodorou ◽  
Eleftheria Galatou ◽  
Georgios-Dimitrios Panagiotidis ◽  
Táňa Ravingerová ◽  
Antigone Lazou

Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor β/δ (PPARβ/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARβ/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARβ/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARβ/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARβ/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARβ/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARβ/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Yves Wang ◽  
Nhu Nguyen ◽  
Keith Nehrke ◽  
Paul S Brookes ◽  
Thu H Le

The glutathione S-transferase ( Gst ) gene family encodes antioxidant enzymes. In humans, a common null allele deletion variant of GST μ-1 ( GSTM1 ) is highly prevalent across populations and is associated with increased risk and progression of various diseases. Using a Gstm1 knockout (KO) mouse model, we previously showed that KO mice with angiotensin II-induced hypertension (HTN) have increased kidney injury compared to wild-type (WT) controls, mediated by elevated oxidative stress. In the same mouse model, we have recently reported that in a Langendorff-perfused cardiac ischemia-reperfusion injury (IRI) model, where damage is also mediated by oxidative stress, male KO hearts are protected while females are not. Here, we investigated the molecular mechanisms for this difference in male hearts. WT and KO mice of both sexes were studied at 12-20 weeks of age. Hearts were snap frozen at baseline and after 25 min of global ischemia, and kidneys were collected at baseline and 4 weeks following HTN induction. A panel of 18 Gst genes were probed by qPCR from baseline hearts and kidneys of both sexes. Global metabolites were assayed using Metabolon, Inc. from hearts of both sexes and kidneys of males, at both baseline and diseased states. Analysis by qPCR (n = 3/group) showed that male, but not female, KO hearts had upregulation of other Gst s. In contrast, no significant differences between were found in male kidneys. Metabolomics (n = 6/group) detected 695 metabolites in hearts and 926 in kidneys. There were increases in several metabolites in KO vs. WT hearts including those with antioxidant properties. Notably, increases in carnosine and anserine were observed in KO male hearts but not in female hearts, while that of other antioxidant-related metabolites were observed in hearts of both sexes, but not in kidneys. HTN induced significant increases in metabolites in KO vs. WT kidneys in the pathways related to and linking methionine, cysteine, and glutathione, which were not observed in hearts. In this study, gene expression and metabolites suggest that the mechanisms compensating for the loss of GSTM1 are both tissue and sex specific. The resulting differences in antioxidant enzymes and metabolites may explain the unexpected protection for male Gstm1 KO hearts in IRI.


2018 ◽  
Author(s):  
Fábio Cahuê ◽  
José Hamilton Matheus Nascimento ◽  
Luciane Barcellos ◽  
Veronica P. Salerno

AbstractStudies on strategies to generate cardioprotective effects have been on the rise. Previous work by our group with an ex vivo model of ischemia/reperfusion has shown that both the short-term consumption of yerba mate and exercise can each induce protection of cardiac function independently. Surprising, the two strategies together do not, with an apparent loss of their respective cardioprotection activity. To improve our understanding of the mechanisms involved without reperforming the experiments, we have conducted a retrospective data science-analysis that have produced new insights. The analysis shows that yerba mate generated reductive stress. Alone, this stress increased redox damage in the heart that appears to have led to a protective conditioning. In combination with exercise, the effects of mate inhibited the intermittent ROS generation promoted by exercise alone, which diminished the adaptive response in the heart. These results suggest that an understanding of the molecular mechanisms involved with the yerba mate-promoted reductive stress in cardiac tissue could lead to improved strategies to induce cardioprotection.


2020 ◽  
Author(s):  
Caitriona M. McEvoy ◽  
Sergi Clotet-Freixas ◽  
Tomas Tokar ◽  
Chiara Pastrello ◽  
Shelby Reid ◽  
...  

AbstractNormothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of DCD injury compared to static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at 3 time points from pig kidneys subjected to 30-minutes of warm ischemia, followed by 8 hours of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (FDR<0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the TCA-cycle and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion, and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (ETFB, CPT2) by immunoblotting. Transcription factor databases identified PPARGC1A, PPARA/G/D and RXRA/B as the upstream regulators of our dataset, and we confirmed their increased expression in NEVKP with RT-PCR. The proteome-level changes observed in NEVKP mediate critical metabolic pathways that may explain the improved graft function observed. These effects may be coordinated by PPAR-family transcription factors, and may represent novel therapeutic targets in ischemia-reperfusion injury.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Hang Wang ◽  
Wayne Lau ◽  
Erhe Gao ◽  
Walter Koch ◽  
Xin Ma ◽  
...  

Myocardial ischemic/reperfusion (MI/R) injury is significantly enhanced in diabetes by incompletely understood mechanisms. Recent clinical and experimental studies demonstrate that hypoadiponectinemia during diabetes enhances oxidative stress and exaggerates MI/R injury. However, molecular mechanisms responsible for hypoadiponectinemia-induced oxidative stress remain unknown. In a discovery-driven fashion, we determined the role of cardiac microRNAs in the MI/R response in adiponectin knockout (APNKO) mice. From 68 total miRNAs differentially expressed between APNKO and wild type (WT) mice, miRNA 449b was identified as the microRNA most relevant to oxidative stress and apoptosis. In cultured neonatal cardiomyocytes, miRNA 449b silencing inhibited hypoxia/reoxygenation-induced apoptosis, whereas miR-449b overexpression significantly increased oxidative stress and cardiomyocyte apoptosis. In APNKO mice, administration of anti-miR-449b decreased oxidative stress (-17.2±3.8%, p<0.05), reduced caspase-3 activity (-21.3±4.2%, p<0.05), attenuated myocardial apoptosis (-16.3±4.1%, p<0.05), and improved myocardial function (1.4±0.3 fold). To identify the downstream molecule regulated by miRNA 449b, we integrated transcriptomics and proteomics data with computational annotation data, and identified Nrf-1 as a miRNA 449b target. A luciferase reporter gene assay demonstrated that miRNA 449b inhibited Nrf-1 expression via Nrf-1 mRNA 3’UTR region binding. Finally, we demonstrated that miRNA 449b was significantly upregulated, Nrf-1 expression was significantly decreased, and the anti-oxidative molecule metallothionein (MT) was significantly inhibited in the diabetic heart subjected to MI/R. Administration of anti-miR-449b in diabetic animals upregulated Nrf-1 and MT expression, reduced oxidative stress, and improved cardiac function (P<0.01) after MI/R. Taken together, this study provides the first evidence that hypoadiponectinemia during diabetes causes cardiac miRNA-449b upregulation and subsequent downregulation of Nrf-1 and MT, thus enhancing oxidative stress and MI/R injury. MicroRNA 449b may represent a potential therapeutic target against diabetic heart disease.


Author(s):  
Changyong Li ◽  
Mingwei Sheng ◽  
Yuanbang Lin ◽  
Dongwei Xu ◽  
Yizhu Tian ◽  
...  

AbstractFoxo1 transcription factor is an evolutionarily conserved regulator of cell metabolism, oxidative stress, inflammation, and apoptosis. Activation of Hedgehog/Gli signaling is known to regulate cell growth, differentiation, and immune function. However, the molecular mechanisms by which interactive cell signaling networks restrain oxidative stress response and necroptosis are still poorly understood. Here, we report that myeloid-specific Foxo1 knockout (Foxo1M-KO) mice were resistant to oxidative stress-induced hepatocellular damage with reduced macrophage/neutrophil infiltration, and proinflammatory mediators in liver ischemia/reperfusion injury (IRI). Foxo1M-KO enhanced β-catenin-mediated Gli1/Snail activity, and reduced receptor-interacting protein kinase 3 (RIPK3) and NIMA-related kinase 7 (NEK7)/NLRP3 expression in IR-stressed livers. Disruption of Gli1 in Foxo1M-KO livers deteriorated liver function, diminished Snail, and augmented RIPK3 and NEK7/NLRP3. Mechanistically, macrophage Foxo1 and β-catenin colocalized in the nucleus, whereby the Foxo1 competed with T-cell factor (TCF) for interaction with β-catenin under inflammatory conditions. Disruption of the Foxo1–β-catenin axis by Foxo1 deletion enhanced β-catenin/TCF binding, activated Gli1/Snail signaling, leading to inhibited RIPK3 and NEK7/NLRP3. Furthermore, macrophage Gli1 or Snail knockout activated RIPK3 and increased hepatocyte necroptosis, while macrophage RIPK3 ablation diminished NEK7/NLRP3-driven inflammatory response. Our findings underscore a novel molecular mechanism of the myeloid Foxo1–β-catenin axis in regulating Hedgehog/Gli1 function that is key in oxidative stress-induced liver inflammation and necroptosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dong Kwon Yang

Oxidative stress plays an important role in the progression of cardiac diseases, including ischemia/reperfusion injury, myocardial infarction, and heart failure. Growing evidence indicates that cabbage has various pharmacological properties against a wide range of diseases, such as cardiovascular diseases, hepatic diseases, and cancer. However, little is known about its effects on oxidative stress in cardiomyocytes or the underlying mechanisms. Therefore, the present study examined the effects of cabbage extract on oxidative stress in H9c2 cardiomyoblasts. Cell viability, reactive oxygen species (ROS) production, apoptosis, mitochondrial functions, and expression levels of mitogen-activated protein kinase (MAPK) proteins were analyzed to elucidate the antioxidant effects of this extract. Cabbage extract protected against H2O2-induced cell death and did not elicit any cytotoxic effects. In addition, cabbage extract suppressed ROS production and increased expression of antioxidant proteins (SOD-1, catalase, and GPx). Cabbage extract also inhibited apoptotic responses and activation of MAPK proteins (ERK1/2, JNK, and p-38) in oxidative stress-exposed H9c2 cells. Notably, cabbage extract preserved mitochondrial functions upon oxidative stress. These findings reveal that cabbage extract protects against oxidative stress and suggest that it can be used as an alternative therapeutic strategy to prevent the oxidative stress in the heart.


Author(s):  
Irina Tikhomirova ◽  
Alexei Muravyov

this review summarizes current knowledge of the hydrogen sulfide role in cardiovascular system, the proposed mechanisms of its action and the prospects for its applicability in the treatment of cardiovascular diseases. Hydrogen sulfide was recently recognized as gasotransmitter &ndash; simple signaling molecule which freely penetrates the cell membrane and regulates a number of biological functions. In humans endogenous H2S is generated via enzymatic and non-enzymatic pathways and its content varies in different tissues and is strictly regulated. In cardiovascular system H2S is produced by myocardial, vascular and blood cells and regulates a number of vital functions. Numerous experimental data prove that endogenously generated as well as exogenously administered H2S exerts a wide range of actions in cardiovascular system, including vasodilator/vasoconstrictor effects, regulation of blood pressure, pro-apoptotic and anti-proliferative effects in the vascular smooth muscle cells, influence on angiogenesis and erythropoiesis, myocardial cytoprotection in ischemia-reperfusion injury, oxygen sensing, inhibition of platelet aggregation and blood coagulation, modification of erythrocyte microrheological properties (aggregability and deformability). Understanding of molecular mechanisms of H2S action and molecular crosstalk between H2S, NO, and CO is essential for the development of its diagnostic and therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document