scholarly journals Neochamaejasmin A Induces Mitochondrial-Mediated Apoptosis in Human Hepatoma Cells via ROS-Dependent Activation of the ERK1/2/JNK Signaling Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yangfang Ding ◽  
Qi Xie ◽  
Wenjing Liu ◽  
Zhaohai Pan ◽  
Xinmei Fan ◽  
...  

The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9, 73.7, and 147.5 μM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group. Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2 cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22004-e22004
Author(s):  
Ozgur Oktem ◽  
Meltem Muftuoglu ◽  
Filiz Senbabaoglu ◽  
Bulent Urman

e22004 Background: No data are available regarding the signaling pathways that controls the proliferation of granulosa cell tumors (GCT). Preliminary findings showing the activation of c-Jun N-terminal kinase (JNK) signaling pathway in the proliferating granulosa cells has led us to investigate the role of this pathway in human GCT. Methods: Human GCT line COV 434 was used. Cell proliferation was monitored real-time quantitatively for 120h using an impedance-based system. Two different pharmacologic JNK inhibitors SP600125 and AS601245 were used. Their inhibitory concentrations were determined in western blot. Cell cycle was analyzed with flow cytometry and apoptosis with yo-pro-1 staining. Results: First, the growth characteristics of this cell line was delineated (Table 1A). Then the cells were treated with the inhibitors at the indicated doses during the log phase. Their proliferation was significantly halted in a dose-dependent manner by both inhibitors (Table 1B). Furthermore, the cells failed to complete mitosis, and began to accumulate at G2 in a dose dependent manner when JNK pathway was interrupted with AS601245 (59%) and SP600125 (39%) during G2/M transition compared to control cells (7%) proceeding through G2/M phase regularly (p<0.001). Compared to 3.5% of control cells, 14% and 30% of the cells underwent apoptosis when treated with 50 µM SP600125 and AS601245, respectively. At 100 µM, the apoptotic fraction increased to 68% and 76%, respectively (p<0.01). Conclusions: These results suggest that pharmacologic manipulation of JNK pathway may provide a therapeutic benefit in the treatment of GCT for which currently, no curative therapy exists beyond surgery. Funded by a Grant to Ozgur Oktem (TUBITAK109S164). [Table: see text]


2020 ◽  
Author(s):  
Shujun Zhao ◽  
Suzhen Fan ◽  
Yanyu Shi ◽  
Hongyan Ren ◽  
Hanqing Hong ◽  
...  

Abstract Background: Propranolol has a significant anti-cancer effect on various cancers. The present study aimed to investigate the underlying mechanism behind the therapeutic effect of Propranolol on the ovarian cancer.Materials and methods: The effect of Propranolol on cell viability was examined by MTT analysis. Cellular apoptosis was evaluated by flow cytometry analysis. Autophagy was defined by autophagosome observed by confocal microscopy after infected with GFP-LC3 adenovirus. In addition, the expression of marker proteins involved in cell apoptosis, autophagy, and ROS/JNK signaling pathway were estimated by Western Blotting assay.Results: Propranolol significantly reduced the viability of human ovarian cancer cell lines SKOV-3 and A2780 in a dose- and time-dependent manner. Flow cytometry analysis revealed that Propranolol induced the cell cycle arrest at G2/M phase and resulted in apoptosis. Moreover, autophagy inhibitor 3-MA markedly enhanced the Propranolol-induced apoptosis. In addition, reactive oxygen species (ROS) was demonstrated dramatically increased after Propranolol treatment and Propranolol activated the phosphorylation of JNK. What is more, p38 inhibitor SB203580 and JNK inhibitor SP600125 attenuated the upregulated expression of LC3-II and cleaved-caspase-3 by the effect of Propranolol. ROS exclusive inhibitor antioxidant N-acetyl cysteine (NAC) weaken the phosphorylation of JNK proteins induced by Propranolol.Conclusions:In summary, our results suggested that Propranolol induced cell apoptosis and protective autophagy through the ROS/JNK signaling pathway in human ovarian cancer cells.


2020 ◽  
Author(s):  
Haitao Zhang ◽  
Xin Yang ◽  
Yingying Xu ◽  
Haijun Li

Objective: Long non-coding RNA (lncRNA) KCNQ1OT1 was reported to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression and biological functions of KCNQ1OT1 in retinoblastoma (RB) are still unknown. We aim to elucidate the potential function and underlying mechanism of KCNQ1OT1 in regulating the progression of RB. Methods: The levels of KCNQ1OT1 were assayed by RT-qPCR analysis. The cell proliferation of RB cells (Y79 and WERI-Rb-1) were evaluated through CCK-8 assay. Meanwhile, Y79 and WERI-Rb-1 cell apoptosis and cell cycle were assessed by Flow Cytometry analysis. Dual luciferase reporter assay were performed to illustrate the interaction between KCNQ1OT1, miR-124, and SP1. Results: We found that KCNQ1OT1 was upregulated and miR-124 was downregulated in RB tissues and cells. Moreover, knockdown of KCNQ1OT1 reduced the proliferation, migration, and cell cycle, as well as promoted cell apoptosis of Y79 and WERI-Rb-1 cells. Western blot analysis consistently proved cell cycle and apoptosis related proteins expression levels. More importantly, KCNQ1OT1 was a sponge of microRNA (miR)-124. MiR-124 inhibition strongly reversed the effect on cell proliferation, cycle arrest, and apoptosis by KCNQ1OT1 knockdown mediated. In addition, KCNQ1OT1 regulated expression of SP1, a directly target of miR-124 in RB. On the other hand, miR-124 inhibitor abrogated the active effect of KCNQ1OT1 silencing on silent information regulator 1 (SIRT1)/c-Jun N-terminal kinase (JNK) signaling pathway.  The function of KCNQ1OT1 was verified in vivo. Conclusions: These findings implied that KCNQ1OT1 silencing inhibited RB progression and activated SIRT1/JNK signaling pathway partially by modulating the miR-124/SP1 axis.


2018 ◽  
Vol 32 ◽  
pp. 205873841881434 ◽  
Author(s):  
Genglong Zhu ◽  
Xialei Liu ◽  
Haijing Li ◽  
Yang Yan ◽  
Xiaopeng Hong ◽  
...  

Liver cancer is one of the most common and lethal cancers in human digestive system, which kills more than half a million people every year worldwide. This study aimed to investigate the effects of kaempferol, a flavonoid compound isolated from vegetables and fruits, on hepatic cancer HepG2 cell proliferation, migration, invasion, and apoptosis, as well as microRNA-21 (miR-21) expression. Cell viability was detected using cell counting kit-8 (CCK-8) assay. Cell proliferation was measured using 5-bromo-2′-deoxyuridine (BrdU) incorporation assay. Cell apoptosis was assessed using Guava Nexin assay. Cell migration and invasion were determined using two-chamber migration (invasion) assay. Cell transfection was used to change the expression of miR-21. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyze the expressions of miR-21 and phosphatase and tensin homologue (PTEN). Expression of key proteins involved in proliferation, apoptosis, migration, invasion, and phosphatidylinositol 3-kinase/protein kinase 3/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway were evaluated using western blotting. Results showed that kaempferol significantly inhibited HepG2 cell proliferation, migration, and invasion, and induced cell apoptosis. Kaempferol remarkably reduce the expression of miR-21 in HepG2 cells. Overexpression of miR-21 obviously reversed the effects of kaempferol on HepG2 cell proliferation, migration, invasion, and apoptosis. Moreover, miR-21 negatively regulated the expression of PTEN in HepG2 cells. Kaempferol enhanced the expression of PTEN and inactivated PI3K/AKT/mTOR signaling pathway in HepG2 cells. In conclusion, kaempferol inhibited proliferation, migration, and invasion of HepG2 cells by down-regulating miR-21 and up-regulating PTEN, as well as inactivating PI3K/AKT/mTOR signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
pp. 171-175
Author(s):  
Tianlong Quan ◽  
Chunhua Zhang ◽  
Xin Song ◽  
Lu Wang

As a common malignant tumor in neurosurgery, glioma is characterized as high incidence rate, easy to invade, metastasize and recurrent. It is difficult to treat and has a poor prognosis. The gliomas pathogenesis is complex and has not been fully resolved. Therefore, finding effective molecular targets for glioma is beneficial to improve therapeutic effect. The SRY-related high mobility group box 9 (SOX9) gene involves in mammalian development and is significantly increased in glioma. However, SOX9’s role in gliomas is unclear. The glioma cell line U87 was assigned into control group, scramble group that was transfected with siRNA negative control, and SOX9 siRNA group that was transfected with SOX9 siRNA followed by analysis of SOX9 mRNA and protein level by qPCR and Western blot, cell proliferation by MTT assay, cell apoptosis by Caspase 3 activity assay, cell invasion by Transwell assay, and MMP-9 level by ELISA. SOX9 siRNA transfection significantly downregulated SOX9 mRNA and protein expressions, inhibited U87 cell proliferation, enhanced Caspase 3 activity, suppressed cell invasion of U87, decreased the secretion of MMP-9 in the supernatant, and reduced ERK1/2 and P38 phosphorylation levels (P < 0.05). SOX9 can regulate the progression of glioma by regulating ERK/P38 signaling pathway, promoting cell apoptosis, inhibiting cell proliferation, and restraining cell invasion.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chengshuo Zhang ◽  
Jialin Zhang ◽  
Xin Li ◽  
Ning Sun ◽  
Rui Yu ◽  
...  

Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression ofβ-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreasedβ-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yuan Xu ◽  
Xiao-Xia Chen ◽  
Yi-Xin Jiang ◽  
Dan-Dan Zhang

Hedyotis diffusa Willd and Scutellaria barbata D. Don (HDSB) were the core couplet in medicines that were commonly used for the purpose of anti-inflammation and anticancer treatments in China. However, biological properties of this couplet have not been fully elucidated. In this study, we screened fractions of HDSB for their anti-inflammatory activities and explored pertinent molecular mechanisms on murine macrophage RAW264.7 cell model. Ethyl acetate fraction from the aqueous extract of the couplet at equal weight ratio (EA11) showed the strongest inhibition of the nitrite accumulation in supernatant of RAW264.7 cells stimulated with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). In addition, EA11 inhibited iNOS and IL-1β expression in a concentration-dependent manner while promoting the expression of HO-1 and PPAR-γ. Anti-inflammatory capability is most likely facilitated by its inhibitory effect on JNK signaling pathway and miR-155 expression. This study suggests that EA11 may be represented as a potential anti-inflammatory therapeutic candidate.


2019 ◽  
Vol 9 (10) ◽  
pp. 1381-1387
Author(s):  
Wanjun Jia ◽  
Yabin Zhang ◽  
Ruian Wang

To investigate the impact of miRNA-206 on the transcriptional expression of EVI1 gene and activation of Akt/JNK signaling pathway in gastric cancer cells, and to provide a new idea for gene-targeted therapy of gastric cancer. The miRNA-206 transfection experiment was firstly used to verify the regulation of EVI1. The experiment was divided into three groups: miRNA-206 mimics (100 nM), miRNA-206 inhibitor (100 nM), miR-NC (100 nM), and transfected into gastric cancer cells sgc7901, Western blot. EVI1 protein expression was detected; then the signal transduction and biological behavior of the cells were verified by miRNA-206 lentiviral vector transfection experiments. The experiment was divided into three groups: pLB-miRNA-206 group, empty vector group and control group (sgc7901 cell group). miRNA-206 and EVI1 mRNA levels were detected by real-time fluorescence quantitative (RT-PCR), and p-Akt and p-JNK were detected by Western blot. Protein expression, cell proliferation was quantified by MTT assay, and the alteration of cell cycle were detected by flow cytometry. miRNA-206 may affect the cell proliferation and division cycle by targeting the regulation of EVI1 transcriptional gene expression and activation of Akt/JNK signaling pathway in gastric cancer cells, and it is expected to provide an important selection site for gene-targeted therapy of gastric cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Rui-Ning Liang ◽  
Pei-Shuang Li ◽  
Yang Zou ◽  
Yu-Ling Liu ◽  
Zhen Jiang ◽  
...  

Endometriosis is a common gynecological condition in childbearing age women and its therapy in modern medicine achieves usually temporary cure. Ping-Chong-Jiang-Ni formula (PCJNF), a Chinese herbal medicine (CHM), was shown to be clinically effective on endometriosis. Meanwhile, c-Jun N-terminal kinase (JNK) signaling pathway was involved in the therapeutic process of CHM on endometriosis. Here, we explored the effect of PCJNF on the ectopic endometrial stromal cells (EESCs) from endometriosis and test whether JNK signaling was involved. After being treated with PCJNF-containing serum obtained from Sprague Dawley rat, cell proliferation, migration, invasion, and apoptosis were evaluated in EESCs, and the total and phosphorylated JNK, ERK, and p38 proteins were detected. Our results showed that PCJNF could suppress cell proliferation, migration, and invasion and induce apoptosis in EESCs. The suppressed proliferation and increased apoptosis were dependent on JNK activation. Additionally, PCJNF caused cell cycle arrest at G2/M phase and this effect was mediated by JNK signaling, while the decreased cell migration and invasion treated by PCJNF were independent of JNK signaling. In summary, our results provided the first evidence that PCJNF could suppress cell proliferation, migration, and invasion, while increasing apoptosis in EESCs, and the suppressed proliferation and enhanced apoptosis were mediated by JNK signaling.


2015 ◽  
Vol 29 (2) ◽  
pp. 322-331 ◽  
Author(s):  
Yan-Dong Wang ◽  
Wei-Dong Chen ◽  
Cunbao Li ◽  
Cong Guo ◽  
Yanyan Li ◽  
...  

Abstract The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR−/− mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR−/− mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR−/− mice. We found that ligand-activated FXR was able to alleviate H2O2 or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H2O2-induced reactive oxygen species (ROS) levels in wild-type but not FXR−/− mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H2O2 in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H2O2 in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document