scholarly journals A Mathematical Model for Locating the Medical and Emergency Centers considering the Failure Probability of Centers

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Alireza Mosayebi ◽  
Barat Mojaradi ◽  
Ali Bonyadi Naeini ◽  
Seyed Hamid Khodadad Hosseini

Enhancing the amount of industrial and chemical production is one of the most important effects of increasing rural people’s migration to cities, which leads to many abnormalities in the healthcare domain. In this regard, one of the most important tasks of health sector managers is designing and implementing some programs to monitor and control the level of community health, which is one of the health organizations’ strategic planning. On the other hand, the location of service centers is one of the most important problems in the area of strategic planning by any organization because selecting an appropriate site for constructing facilities can have a significant effect on reducing costs and increasing the coverage level. However, an appropriate site to construct the facilities must also have maximum reliability in addition to reducing costs and increasing the coverage level. This problem is important because many factors, such as natural disasters, result in failure of centers and influence the confidence level of system performance. Therefore, it is necessary to consider maximizing reliability in locating centers. For this purpose, an integer mathematical model is presented in this paper to select the optimum site for constructing the medical and emergency centers by considering the failure probability of each center. The research model’s objective function minimizes the system costs, including the costs of construction, patient transfer, and failure of medical and emergency centers. Finally, a numerical example is designed and reviewed by real-world problems to ensure the performance accuracy of the proposed model.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dandan Yuan ◽  
Wenjun Yi ◽  
Jun Guan

Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.


2016 ◽  
Vol 6 (3) ◽  
pp. 54-59
Author(s):  
Trong Hung Nguyen ◽  
Ba Thuan Le

The report “Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO2 powders” [14] has built up a mathematical model describing the effect of the fabrication parameters on SSA (Specific Surface Area) of ex-AUC (Ammonium Uranyl Carbonate) UO2 powders. In the paper, the Brandon mathematical model that describe the relationship between the essential fabrication parameters [reduction temperature (TR), calcination temperature (TC), calcination time (tC) and reduction time (tR)] and SSA of the obtained ex-ADU (Ammonium Di-Uranate) UO2 powder product has established. The proposed model was tested with Wilcoxon’s rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of ex-ADU UO2 powders


Author(s):  
Ramin Sadeghian

Background: The tools to control COVID-19 virus and this epidemic have been tested in all countries and at different levels. At the community level, they include observing hygienic principles, such as observing social distance, wearing masks, washing hands, observing cleanliness, observing personal belongings, and etc. Also at the macro level, governments have taken measures to combat the virus, such as closing cities, purchasing vaccines hygiene training. Given the high costs of closing cities and purchasing vaccines for governments, they may be willing to select and use a combination of them to control the virus. Considering these 2 factors as 2 competitors in the effectiveness of COVID-19 control, this study sought to find an equilibrium point to control the virus. Methods: An infinite 2-player game was defined by considering the number of cities closed per person-day and the number of vaccine purchased per person, both of which have continuous and infinite space. On the other hand, a significant basic criterion for governments can be the cost and number of patients with the disease. Hence, the game was defined based on 2 criteria. A case study was also solved for the sake of clarity. Results: The government must close offices for at least 12 days and inject 2 doses of the vaccine to about 28 million people in order to achieve its goal of reducing costs and reducing the incidence of the disease. Conclusion: By solving the proposed model, it was found that for the initial control of the disease, the purchase and injection of vaccines can be more effective, but in order to further reduce and control the disease, it is better to close jobs. Analyses also showed that governments that are less willing to spend money on disease control could close jobs.


Transport ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 718-726 ◽  
Author(s):  
S. Mohammad Arabzad ◽  
Hadi Shirouyehzad ◽  
Mahdi Bashiri ◽  
Reza Tavakkoli-Moghaddam ◽  
Esmaeil Najafi

In this paper, an Integer Linear Programming (ILP) has been developed for rebalancing the stations of a Periodic Bike Relocation Problem (PBRP) in multiple periods. The objective function of the mathematical model is reducing costs of implementing trucks, transportation between stations and holding bikes on trucks during rebalancing. The variables we are following them in this model are conducting the optimal route in several periods, using the most appropriate trucks for these routes, and determining the best program for loading/unloading bikes for stations. The distinguishing features of the proposed model are considering several bike types, several exclusive trucks and several time periods. Finally, a numerical example confirms the applicability of the proposed model.


Author(s):  
A. V. Komissarov ◽  
D. N. Bibikov ◽  
S. A. Badarin ◽  
N. V. Sinitsyna ◽  
N. I. Kostyleva ◽  
...  

In this study, we aimed to calculate dependencies for assessing the value of weight loss during lyophilization of diagnostic preparations depending on the drying temperature and time. A model solution for lyophilization was Hottinger broth with gelatin (1.5%) and peptone (10%) used as stabilizers. To achieve the aim, a full factorial experiment 23 was planned and implemented, the investigated factors in which were the temperature and time of final drying, as well as the amount of substance in the primary packaging. Using ampoules as containers for primary packaging, a regression equation was obtained. The conducted statistical processing of the obtained equation showed the feasibility of the developed mathematical model. According to the model, an increase in the drying temperature and time leads to a decrease in the amount of weight loss; however, weight loss increases under an increase in the amount of substance in the secondary packaging. As a result of the experiments, a correspondence between the experimental and calculated values of weight loss during drying was revealed. The effect of the height of the material under drying on the weight loss was studied when drying an equivalent amount of substance in vials. The developed mathematical model for drying in ampoules was modified to describe the process of lyophilization in vials. The experimental results confirmed the possibility of calculating weight loss during drying using the proposed model. The developed dependencies can be used for estimating the value of weight loss during lyophilization of various substances, which is of particular importance in terms of reducing costs when establishing the temperature and time parameters of drying new biological products and modifying production regimes when changing the amount of product, type of primary packaging or desorption conditions.


Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 239-248 ◽  
Author(s):  
Sung Ryong Ha ◽  
Dwang Ho Lee ◽  
Sang Eun Lee

Laboratory scale experiments were conducted to develop a mathematical model for the anaerobic digestion of a mixture of night soil and septic tank sludge. The optimum mixing ratio by volume between night soil and septic tank sludge was found to be 7:3. Due to the high solids content in the influent waste, mixed-liquor volatile suspended solids (MLVSS) was not considered to be a proper parameter for biomass concentration, therefore, the active biomass concentration was estimated based on deoxyribonucleic acid (DNA) concentration in the reactor. The weight ratio between acidogenic bacteria and methanogenic bacteria in the mixed culture of a well-operated anaerobic digester was approximately 3:2. The proposed model indicates that the amount of volatile acid produced and the gas production rate can be expressed as a function of hydraulic residence time (HRT). The kinetic constants of the two phases of the anaerobic digestion process were determined, and a computer was used to simulate results using the proposed model for the various operating parameters, such as BOD5 and volatile acid concentrations in effluent, biomass concentrations and gas production rates. These were consistent with the experimental data.


2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Xinqing Zhuang ◽  
Keliang Yan ◽  
Pan Gao ◽  
Yihua Liu

Anchor dragging is a major threat to the structural integrity of submarine pipelines. A mathematical model in which the mechanical model of chain and the bearing model of anchor were coupled together. Based on the associated flow rule, an incremental procedure was proposed to solve the spatial state of anchor until it reaches the ultimate embedding depth. With an indirect measurement method for the anchor trajectory, a model test system was established. The mathematical model was validated against some model tests, and the effects of two parameters were studied. It was found that both the ultimate embedding depth of a dragging anchor and the distance it takes to reach the ultimate depth increase with the shank-fluke pivot angle, but decrease as the undrained shear strength of clay increases. The proposed model is supposed to be useful for the embedding depth calculation and guiding the design of the pipeline burial depth.


Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1843
Author(s):  
Jelena Vlaović ◽  
Snježana Rimac-Drlje ◽  
Drago Žagar

A standard called MPEG Dynamic Adaptive Streaming over HTTP (MPEG DASH) ensures the interoperability between different streaming services and the highest possible video quality in changing network conditions. The solutions described in the available literature that focus on video segmentation are mostly proprietary, use a high amount of computational power, lack the methodology, model notation, information needed for reproduction, or do not consider the spatial and temporal activity of video sequences. This paper presents a new model for selecting optimal parameters and number of representations for video encoding and segmentation, based on a measure of the spatial and temporal activity of the video content. The model was developed for the H.264 encoder, using Structural Similarity Index Measure (SSIM) objective metrics as well as Spatial Information (SI) and Temporal Information (TI) as measures of video spatial and temporal activity. The methodology that we used to develop the mathematical model is also presented in detail so that it can be applied to adapt the mathematical model to another type of an encoder or a set of encoding parameters. The efficiency of the segmentation made by the proposed model was tested using the Basic Adaptation algorithm (BAA) and Segment Aware Rate Adaptation (SARA) algorithm as well as two different network scenarios. In comparison to the segmentation available in the relevant literature, the segmentation based on the proposed model obtains better SSIM values in 92% of cases and subjective testing showed that it achieves better results in 83.3% of cases.


Sign in / Sign up

Export Citation Format

Share Document