scholarly journals Hybrid Modification of Stone Mastic Asphalt with Cellulose and Basalt Fiber

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
You Huang ◽  
Zhaohui Liu ◽  
Li Liu ◽  
Yunbao Zhang ◽  
Qingxiang Xu

In this study, cellulose and basalt fiber were introduced simultaneously to stone mastic asphalt (SMA) to investigate the effects of hybrid modification on performance improvement of asphalt mixture. The study consists of three parts. The first part investigated material properties of cellulose and basalt fiber, including microscope electrical scanning. The second part conducted a series of tests to evaluate the effects of different combinations of cellulose and basalt fiber on performance. With a total addition of fiber 0.4% by the weight of mixture, five different cellulose-basalt fiber ratios, 0 : 4, 1 : 3, 2 : 2, 3 : 1, and 4 : 0, were introduced to the asphalt mixtures. A series of tests including draindown, permanent deformation, low temperature bending, beam fatigue, and moisture damage resistance were conducted. In the final part, a benefit-cost ratio was designed to help determine the optimum cellulose-basalt fiber combination in the economic aspect. Results show that material properties of the two fibers are very different, including thermostability, modulus, surface, and microstructure, especially oil absorption. In general, all samples with fibers outperformed the control group in all the performance tests. Specifically, cellulose fiber improved draindown, ductility, and fatigue more significantly, whilst basalt fiber has more influence on improving permanent deformation, deflection strength, and stress sensitivity. Equal portion of cellulose and basalt fiber has the best moisture damage resistance. The mechanisms of the two fibers are different, resulting in different performance improvements on asphalt mixtures. Overall, an appropriate combination of the two fibers would produce paving materials with more balanced performance in an economical way.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Juan Gallego ◽  
Ana María Rodríguez-Alloza ◽  
Leticia Saiz-Rodríguez

Stone mastic asphalt (SMA) mixtures exhibit excellent behaviour; they are highly resistant to reflective cracking and permanent deformation, as well as providing the wearing surface with an optimal texture. However, the production and compaction temperatures are similar to conventional mixtures, which means that there is a significant consumption of energy, as well as greenhouse gas emissions. Warm mix asphalt (WMA) technology, which has been developed over the last few years, might allow lower temperatures without compromising the mechanical behaviour of the mixtures. Also, over the last few decades, rubberized asphalt has proved to be effective in improving the performance and being environmentally suitable, but it requires higher production temperatures than conventional mixtures. In this study, several tests were performed to evaluate the effect of a chemical WMA additive on the compactability and water sensitivity of rubberized SMA mixtures with both the Marshall and the gyratory compactor. The investigation has shown that the gyratory compactor is more suitable for studying compactability and the water sensitivity of rubberized SMA with WMA additives.


2020 ◽  
Vol 239 ◽  
pp. 117700 ◽  
Author(s):  
Alireza Ameli ◽  
Rezvan Babagoli ◽  
Mohammad Khabooshani ◽  
Ramin AliAsgari ◽  
Farhang Jalali

2020 ◽  
Vol 10 (19) ◽  
pp. 6958
Author(s):  
Bartosz Budziński ◽  
Paweł Mieczkowski

This paper presents a case study of the application of an innovative asphaltic mixture used for making protective layers on bridges. This mixture, called stone mastic asphalt rich in bitumen mastic (shortened to SMA-MA) produces an impervious surface, resistant to permanent deformation and fatigue, easily produced and laid down on bridge decks. The authors analyzed the state of knowledge on the asphalt mixtures used on bridges. This article describes the first trials with the SMA-MA mixtures and an example of the most spectacular application.


Author(s):  
Altan Cetin ◽  
Burak Evirgen ◽  
Asena Karslioglu ◽  
Ahmet Tuncan

Stone Mastic Asphalt (SMA) is a mixture design against rutting caused by intensive and heavy traffic loads. While modified bitumen needs to be used in this mixture, the use of cellulosic fibers is essential to prevent the infiltration of bitumen during the carriage of mixture due to high bitumen content. In this study, the effects of basalt fiber on the performance of SMA mixtures is investigated as an alternative to cellulosic fiber admixtures in the prevention of draindown. Raw materials commonly used in Turkey were chosen as Type-I graded limestone aggregate and B50/70 asphalt cement, according to the General Directorate of Highways. In total, 109 specimens were prepared by a gyratory compactor according to the superpave design method. Sixty of these specimens were basalt fiber added samples with a ratio from 0.1 % to 0.8 % by dry weight aggregate. An addition of basalt fiber of 0.6 % at 25 °C seriously increases the resilient modulus and tensile strength of the samples. In addition, 0.4 % basalt fiber mixed samples shows that the greatest resistance against permanent deformation according to the results of static uniaxial creep test performed at 40 °C. Basalt fibers have no positive effect when a decrement of bitumen viscosity exceeds the bitumen softening point at the end of repeated uniaxial tests. On the other hand, bitumen draindown and water damage test results are within acceptable limits.


2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Herda Yati Katman ◽  
Mohd Rasdan Ibrahim ◽  
Mohamed Rehan Karim ◽  
Suhana Koting ◽  
Nuha Salim Mashaan

This study aims at comparing the permanent deformation of Stone Mastic Asphalt (SMA) rubberized asphalt mixtures produced by the wet process. In this study, rubberized binders were prepared using two different blending methods, namely, continuous blend and terminal blend. To study the creep behaviour of control and rubberized asphalt mixtures, the dynamic creep test was performed using Universal Materials Testing Apparatus (UMATTA) at different temperatures and stress levels. Zhou three-stage creep model was utilized to evaluate the deformation characteristics of the mixtures. In all test conditions, the highest resistance to permanent deformation is showed by the rubberized mixtures produced with continuous blend binders. This study also reveals that the permanent deformation of rubberized mixtures cannot be predicted based on the characteristics of the rubberized binders.


Author(s):  
Ekarizan Shaffie ◽  
◽  
H.A. Rashid ◽  
Fiona Shiong ◽  
Ahmad Kamil Arshad ◽  
...  

Stone Mastic Asphalt (SMA) is a gap-graded hot mixture designed to provide higher resistance towards permanent deformation and rutting potential by 30% to 40% more than dense-graded asphalt, due to its stable aggregate skeleton structure. However, compared to other types of hot mix asphalt, SMA unfortunately has some shortcomings in term of its susceptibility towards moisture-induced damage due to its structure and excessive bitumen content in the composition. This research aims to assess the performance of a SMA mixture with steel fiber by enhancing overall stability, abrasion resistance, and, most importantly, moisture susceptibility. This study involved the incorporation of various steel fiber proportions of 0%, 0.3%, 0.5% and 0.7% by the total weight of mixture. The steel fiber modified SMA was made up of 6.0% PEN 60/70 bitumen content. The performance of SMA were evaluated through Marshall stability and flow test, Cantabro loss test and indirect tensile strength test. The results obtained from the testing showed that the incorporation of steel fiber is significantly effective to enhance the resistance towards moisture damage, while increasing the stability and reducing the abrasion loss of SMA mixture, compared to conventional mixture. Overall, it can be concluded that the addition of steel fiber in asphalt mixture specifically SMA, has improved the mechanical performance in the application of asphalt pavement with the optimum steel fiber proportion of 0.3% by the weight of mixture. The developed models between the independent variables and responses demonstrated high levels of correlation. The study found that Response Surface Methodology (RSM) is an effective statistical method for providing an appropriate empirical model for relating parameters and predicting the optimum performance of an asphaltic mixture to reduce flexible pavement failure.


Sign in / Sign up

Export Citation Format

Share Document