scholarly journals Optimization Analysis of Smart Steel-Plastic Geogrid Support for Tunnel

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Qin Liu ◽  
Jiankun Guo ◽  
Lei Liu ◽  
Kunpeng Huang ◽  
Wei Tian ◽  
...  

With the concept of smart geogrid coming out, many scholars have built optical fiber into the geogrid to form a kind of smart geogrid material with self-sensing function of structural deformation. It can not only reinforce the parts with potential safety hazards, but also have the functions of safety monitoring, intelligent prevention, and control of engineering disasters, which is of great significance for ensuring the safety of tunnel construction and improving the tunnel monitoring methods. Based on predecessors’ research on smart geogrid tensile calibration experiment and sensor method simulation and experimental verification, this paper analyzes the smart geogrid and the tunnel surrounding rock as a whole, to study the deformation coordination mechanism between the geogrid material and the tunnel surrounding rock. Referring to the relevant engineering practice case, through finite element numerical simulation, the optimal layout of smart geogrid material was explored, and the principle of discrete curvature reconstruction curve sensing of smart geogrid was optimized by simulating the working conditions of different construction methods and supporting conditions, in order to provide a theoretical basis for the application of smart geogrid material in practical tunnel engineering.

2011 ◽  
Vol 250-253 ◽  
pp. 1262-1265
Author(s):  
Tong Liu ◽  
Zi Chao Dong ◽  
Hai Yong Yang

According to the characteristic of multi-arch highway tunnel,based on a practice engineering, the monitoring work was consisted of four sections:the displacement of surrounding rock; such as crown settlement, displacement of the ground, displacement of inner surrounding rock; that of stress and stain of support structure; that of force in middle-wall. In course of construction,monitoring data was analyzed in time.Structural timbering parameters were modified in response to abnormal monitoring data in order to guarantee safety.the testing results of the safety monitoring system are satisfactory, which serves as a symbol of our research work. Thus, our engineering practice has proved the applicability and feasibility of the safety monitoring and information construction methods.


2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Wu ◽  
Yanlong Chen ◽  
Liang Chen ◽  
Xianbiao Mao ◽  
Wei Zhang

Based on the Mohr–Coulomb criterion, a new analytical solution of a circular opening under nonuniform pressure was presented, which considered rock dilatancy effect and elastic-brittle-plastic failure characteristics. In the plastic zone, the attenuation of Young’s modulus was considered using a radius-dependent model (RDM), and solution of the radius and radial displacement of plastic zone was obtained. The results show that many factors have important impact on the response of the surrounding rock, including lateral pressure coefficient, dilation coefficient, buried depth, and Young’s modulus attenuation. Under nonuniform pressure condition, the distribution of plastic zone and deformation around the opening show obvious nonuniform characteristic: with the increasing of lateral pressure coefficient, the range of plastic zone and deformation decrease gradually at side, while they increase at roof and floor, and the location of the maximum value of support and surrounding rock response curve transfers from side to roof. Based on the analytical results and engineering practice, an optimization method of support design was proposed for the circular opening under nonuniform pressure.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 512
Author(s):  
Zeliang Yu ◽  
Pu Xue ◽  
Yue Chen

Composite material has been widely used in various fields for its high specific strength and high specific stiffness, so the connectors applicable to composite structures capture many researchers’ attention. With the advantages of higher carrying capacity and repetitive assembling and disassembling, bolted joint becomes one of the most popular connectors in engineering practice. Cutting off the fiber and causing stress concentration are more serious to composite than metal, so it is necessary to predict the strength of the composite joints. Most investigations focus on the response under quasi-static loading, while dynamic effects should be in consideration in increasing impact conditions. The dynamic mechanical properties of composite joint may have a significant impact on the structural deformation and damage modes. For this purpose, this paper conducts dynamic composite single-bolted joint simulations in ABAQUS/Explicit, which used for predicting dynamic strength of the composite joint. T800/X850 laminates were tested to investigate their dynamic properties in our lab. Then the three-dimension progression damage model was established, while the dynamic constitutive model, damage initial criteria and damage evolution law of composite materials were coded in VUMAT of the finite element software ABAQUS/Explicit. The model was validated by quasi-static experiments of composite joint. The simulation results indicate that the yield strength and ultimate strength of the single-bolted composite joint are obviously increasing when consider the strain rate effect and dynamic loading. And the load-displacement curves show significant difference in damage stage. The main damages are sub-layer buckling and fiber breakage caused by extrusion.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


Author(s):  
Mingnian Wang ◽  
Yinting Zhao ◽  
Ziqiang Li ◽  
Dagang Liu ◽  
Li Yu

The average cyclic load of heavy-haul railway trains is generally larger than that of a conventional mixed passenger and freight railway. This load leads to more severe fatigue damage to structures, including the concrete in a tunnel invert. This study focuses on the fatigue damage of a tunnel invert under a cyclic load of 33 tonnes. The damage classifications for the tunnel inverts are given based on field investigations. With large-scale in-situ tests on the Zhang-Tang Heavy-Haul Railway Tunnel, the pressure–time distributions for the additional dynamic stresses on the surface of the track-bed for various classes of the surrounding rock are proposed. They were subsequently validated against numerical simulation using the ANSYS Workbench module. Fatigue damage of the tunnel invert is demonstrated using both numerical and monitoring methods. It has been observed that the damage to the tunnel invert becomes severe and extensive if the quality of the surrounding rock degrades. Damage zones develop first at the top of the invert and then expand to a deeper position, depending on the rock grade.


2013 ◽  
Vol 690-693 ◽  
pp. 886-889
Author(s):  
Bao Long Lin

Based on the engineering background of Dongkeling tunnel of Guizhou-Guangzhou high-speed rail, construction process in soft surrounding rock is simulated by using finite difference software——FLAC according to large-deformation characteristics in water-rich and weathering altered granite weak surrounding rock. Several aspects, such as vault settlement, invert uplift, clearance convergence, surface settlement, the maximum and minimum principal stress of the initial support and plastic zone of surrounding rock, are analyzed to determine the tunnel stability with different construction methods.


2014 ◽  
Vol 580-583 ◽  
pp. 983-986
Author(s):  
Chun Lei Xin ◽  
Bo Gao

Long-span and bifurcation tunnel engineering is not very common in underground engineering field. It is difficult to construct this complicated structure because of the numerous influencing factors. In order to find out the optimum construction method for long-span and bifurcation tunnel to guarantee construction security and stabilization of this project, six construction methods were compared and analyzed by using numerical simulation. The results show that: (1) The excavation of confluence segment and small interval tunnel can affect each other but the confluence segment is the crucial part of the whole project. (2) The vertical brace determines surrounding rock and preliminary support stabilization in confluence segment. (3) The central concrete between main tunnel and ramp tunnel is the key point to guarantee the construction security and stabilization of small interval tunnel. The above results certainly contribute to research and develop new types of construction methods for long-span and bifurcation tunnel engineering.


2012 ◽  
Vol 170-173 ◽  
pp. 1432-1436
Author(s):  
Dan Guang Pan ◽  
Ming Chao Yang

Prediction of tunnel surrounding rock displacement is a hot topic. To accurately predict the displacement of tunnel surrounding, we put forward three exponential smoothing method and describe its basic theory. Based on the measured displacement of a tunnel monitoring sections in Northwest area, compared with traditional regression analysis and grey model as GM (1, 1) to predict the displacement, the results show that the average error and variance about prediction of displacement using three exponential smoothing method is minimum. This method is suitable for the prediction of tunnel surrounding rock deformation and can be applied to practical engineering.


Sign in / Sign up

Export Citation Format

Share Document