scholarly journals Characterization of the Omija (Schisandra chinensis) Extract and Its Effects on the Bovine Sperm Vitality and Oxidative Profile during In Vitro Storage

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Eva Tvrdá ◽  
Jaroslav Michalko ◽  
Július Árvay ◽  
Nenad L. Vukovic ◽  
Eva Ivanišová ◽  
...  

Schisandra chinensis is a woody vine native to China, Korea, and Russia, which has been used as a traditional herbal remedy to treat male infertility. As very little information is available concerning its effects on ejaculated spermatozoa, the aim of this study was to investigate the chemical, antioxidant, and antibacterial properties of the S. chinensis berry (Omija) extract followed by an assessment of its in vitro effects on bovine sperm function and oxidative balance. Phytochemical components of the Omija extract were determined by high performance liquid chromatography. The content of polyphenols, flavonoids, and carotenoids was assessed by spectrophotometric protocols. Antioxidant characteristics of the Omija extract were determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and molybdenum-reducing antioxidant power (MRAP) assays. The disc diffusion method and determination of the minimal inhibitory concentration were applied to study the antibacterial properties of Schisandra. Thirty semen samples were exposed to different concentrations of Omija (1, 5, 10, 25, 50, and 75 µg/mL) for 0, 2, and 24 h. Sperm motility, mitochondrial activity, and superoxide and reactive oxygen species production, as well as total antioxidant capacity and oxidative damage to proteins and lipids were determined. Our data reveal that the Omija extract, particularly at a concentration range within 5–50 µg/mL, exhibited dose-dependent motion-promoting and metabolism-enhancing properties, accompanied by significant antioxidant effects. We may conclude that the biomolecules present in the Omija extract such as schisandrins and phenolic molecules offer protection to critical sperm structures against oxidative insults and/or possible bacterial contamination, leading to a higher preservation of mammalian sperm viability and functional activity.

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 843
Author(s):  
Tamara Ortiz ◽  
Federico Argüelles-Arias ◽  
Belén Begines ◽  
Josefa-María García-Montes ◽  
Alejandra Pereira ◽  
...  

The best conservation method for native Chilean berries has been investigated in combination with an implemented large-scale extract of maqui berry, rich in total polyphenols and anthocyanin to be tested in intestinal epithelial and immune cells. The methanolic extract was obtained from lyophilized and analyzed maqui berries using Folin–Ciocalteu to quantify the total polyphenol content, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) to measure the antioxidant capacity. Determination of maqui’s anthocyanins profile was performed by ultra-high-performance liquid chromatography (UHPLC-MS/MS). Viability, cytotoxicity, and percent oxidation in epithelial colon cells (HT-29) and macrophages cells (RAW 264.7) were evaluated. In conclusion, preservation studies confirmed that the maqui properties and composition in fresh or frozen conditions are preserved and a more efficient and convenient extraction methodology was achieved. In vitro studies of epithelial cells have shown that this extract has a powerful antioxidant strength exhibiting a dose-dependent behavior. When lipopolysaccharide (LPS)-macrophages were activated, noncytotoxic effects were observed, and a relationship between oxidative stress and inflammation response was demonstrated. The maqui extract along with 5-aminosalicylic acid (5-ASA) have a synergistic effect. All of the compiled data pointed out to the use of this extract as a potential nutraceutical agent with physiological benefits for the treatment of inflammatory bowel disease (IBD).


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


2017 ◽  
Vol 10 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Grazielle Millo ◽  
Apa Juntavee ◽  
Ariya Ratanathongkam ◽  
Natsajee Nualkaew ◽  
Peerapattana, Jomjai ◽  
...  

ABSTRACT Aim This study evaluated the in vitro antibacterial effects of the formulated Punica granatum (PG) gel against Streptococcus mutans, Streptococcus sanguinis, and Lactobacillus casei. Materials and methods The PG extract was dissolved in water at 500 mg/mL. High performance liquid chromatography (HPLC) was used for identification and quantification of chemical marker punicalagin. Minimum bactericidal concentration (MBC) and time-kill assay (TKA) were investigated. Antibacterial activities of the formulated PG gel, 2% chlorhexidine (CHX) gel and blank gel were tested by measuring the zones of inhibition through agar well diffusion method. Results The HPLC results showed presence of punicalagin at 2023.58 ± 25.29 μg/mL in the aqueous PG extract and at 0.234% (w/w) in the formulated PG gel. The MBC for S. mutans, S. Sanguinis, and L. casei were 250, 125, and 500 mg/mL respectively. The TKA of 500 mg/mL aqueous PG extract showed total inhibition of S. mutans, S. Sanguinis, and L. casei at 6, 1, and 24 hours contact time respectively. Agar well diffusion revealed that for S. mutans, CHX gel > PG gel > blank gel; for S. sanguinis, CHX gel = PG gel > blank gel; for L. casei, CHX gel > PG gel = blank gel. Comparison of the PG gel potency showed that S. sanguinis = S. mutans > L. casei. Conclusion The PG gel equivalent to 0.234% punicalagin (w/w) inhibited S. mutans and S. sanguinis but not L. casei within 24 hours incubation period and has the potential to be used for caries prevention. How to cite this article Millo G, Juntavee A, Ratanathongkam A, Nualkaew N, Peerapattana J, Chatchiwiwattana S. Antibacterial Inhibitory Effects of Punica Granatum Gel on Cariogenic Bacteria: An in vitro Study. Int J Clin Pediatr Dent 2017;10(2):152-157.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kenza Ammor ◽  
Dalila Bousta ◽  
Sanae Jennan ◽  
Bahia Bennani ◽  
Abdellah Chaqroune ◽  
...  

The aim of this study is to investigate in vitro antioxidant and antibacterial activities of the aqueous and hydroethanolic extracts for aerial parts of Herniaria hirsuta. Extracts were screened for their possible antioxidant activities by three tests: DPPH free radical-scavenging, reducing power, and molybdenum systems. The screening of antibacterial activity of extracts was individually evaluated against sixteen bacteria species using a disc diffusion method. Flavonoids, total phenols, and tannins content were performed for both extracts. It shows higher content in the hydroethanolic extract. The hydroethanolic extract showed a significant antioxidant activity for the three methods studies to the aqueous extract, but nonsignificant results compared to the reference (BHT). However, both extracts have negative effect on the strains studies for the antibacterial activity.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Agata Cieślik-Bielecka ◽  
Tadeusz Bold ◽  
Grzegorz Ziółkowski ◽  
Marcin Pierchała ◽  
Aleksandra Królikowska ◽  
...  

The aim of the study was to investigate the leukocyte- and platelet-rich plasma (L-PRP) antimicrobial activity. The studied sample comprised 20 healthy males. The L-PRP gel, liquid L-PRP, and thrombin samples were testedin vitrofor their antibacterial properties against selected bacterial strains using the Kirby-Bauer disc diffusion method. Two types of thrombin were used (autologous and bovine). Zones of inhibition produced by L-PRP ranged between 6 and 18 mm in diameter. L-PRP inhibited the growth ofStaphylococcus aureus(MRSA and MSSA strains) and was also active againstEnterococcus faecalisandPseudomonas aeruginosa. There was no activity againstEscherichia coliandKlebsiella pneumoniae. The statistically significant increase of L-PRP antimicrobial effect was noted with the use of major volume of thrombin as an activator. Additionally, in groups where a bovine thrombin mixture was added to L-PRP the zones of inhibition concerning MRSA,Enterococcus faecalis, andPseudomonas aeruginosawere larger than in the groups with autologous thrombin. Based on the conducted studies, it can be determined that L-PRP can evokein vitroantimicrobial effects and might be used to treat selected infections in the clinical field. The major volume of thrombin as an activator increases the strength of the L-PRP antimicrobial effect.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 329
Author(s):  
Jiří Vrba ◽  
Barbora Papoušková ◽  
Pavel Kosina ◽  
Kateřina Lněničková ◽  
Kateřina Valentová ◽  
...  

Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 344
Author(s):  
Gabriele Meroni ◽  
Elena Cardin ◽  
Charlotte Rendina ◽  
Valentina Rafaela Herrera Millar ◽  
Joel Fernando Soares Filipe ◽  
...  

Essential oils (EOs) and honeybee products (e.g., honey and propolis) are natural mixtures of different volatile compounds that are frequently used in traditional medicine and for pathogen eradication. The aim of this study was to evaluate the antibacterial properties of tea tree (Melaleuca alternifolia) EO (TTEO), Rosmarinus officinalis EO (ROEO), manuka-based gel, and propolis against 23 strains of Staphylococcus pseudintermedius (SP) isolated from canine pyoderma. Antimicrobial resistance screening was assessed using a panel of nine antimicrobial agents coupled with a PCR approach. An aromatogram was done for both EOs, using the disk diffusion method. The minimum inhibitory concentration (MIC) was determined for all the compounds. Among the 23 SP strains, 14 (60.9%) were multidrug-resistant (MDR), 11 strains (47.8%) were methicillin-resistant (MRSP), and 9 (39.1%) were non-MDR. The mean diameter of the inhibition zone for Melaleuca and Rosmarinus were 24.5 ± 8.8 mm and 15.2 ± 8.9 mm, respectively, resulting as statistically different (p = 0.0006). MIC values of TTEO and ROEO were similar (7.6 ± 3.2% and 8.9 ± 2.1%, respectively) and no statistical significances were found. Honeybee products showed lower MIC compared to those of EOs, 0.22 ± 0.1% for Manuka and 0.8 ± 0.5% for propolis. These findings reveal a significant antibacterial effect for all the tested products.


Author(s):  
Ali Mandegary ◽  

Purpose of the Study: Textured soy protein (TSP) and Ajil are two processed forms of soybean (Glycine max L.) which are widely consumed by Iranian for nutritional purpose. Recently, we have reported antioxidant and anticholinesterse effect of raw soybean (RS) which has been attributed to isoflavones such as genistein. In this work, we aimed to compare in vitro antioxidant and antichoinesterase effects of TSP, Ajil and RS to select the most effective one for learning capacity and spatial memory studies. Method: Genistein content was determined using high performance thin layer chromatography (HPTLC) while diphenylpicrylhydrazil (DPPH) radiacal scavenging and ferric reducing antioxidant power (FRAP) were used for antioxidant evaluation study and Ellman’s colorimetry method was used for anticholinesterase assay. TSP extract (TSPE) was administered to male rats (100, 200 and 400mg/kg, i.p for 7 days) before scopolamine (1mg/kg) injection. Learning capacity and spatial memory was evaluated by passive avoidance test (PAT) and Morris water maze (MWM) methods compared to physostigmine and piracetam. Results: The greatest antioxidant and anticholinesterase effect was observed for TSPE which significantly prolonged initially latency in PTA (p<0.05) and improved all indicators in MWM test at 200mg/kg. Conclusion: The memory improving effect of TSPE might be due to its antioxidant and anticholinesterase effect as well as neuroprotective effects of its isoflavones.


2020 ◽  
Vol 7 (1) ◽  
pp. 46-58
Author(s):  
Lamia Kraza ◽  
Senoussi Mohammed Mourad ◽  
Youcef Halis

AbstractThe aim of this work was to establish the antioxidant and antimicrobial activity of hydro-alcoholic and aqueous extracts prepared from the leaves of Globularia alypum L. The quantitative estimation of total polyphenols (by the Folin-Ciocalteu method) and total flavonoids (by the method of aluminium trichloride) showed that the aqueous and ethyl acetate extracts had the highest content of phenolic and flavonoid compounds. Moreover, the results of antioxidant power assessed by both method DPPH and phosphomolybdenum indicated that leaves extracts of G. alypum expressed a considerable activity. The evaluation of the antimicrobial effects, using the disc diffusion method from antibacterial screening and the direct contact method from the antifungal activity, indicated strong antibacterial and antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document