scholarly journals Nondestructive Testing for Wheat Quality with Sensor Technology Based on Big Data

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yan-Ge Tian ◽  
Zheng-Nan Zhang ◽  
Shuang-Qi Tian

Nondestructive testing with sensor technology is one of the fastest growing and most promising wheat quality information analysis technologies. Nondestructive testing with sensor technology benefits from the latest achievement of many disciplines such as computer, optics, mathematics, chemistry, and chemometrics. It has the advantages of simplicity, speed, low cost, no pollution, and no contact. It is widely used in wheat quality analysis and testing research. This article summarizes nondestructive testing with sensor technology for wheat quality, including the mechanical model, hyperspectral technology, Raman spectroscopy, and near-infrared techniques for wheat mechanical properties, storage properties, and physical and chemical properties (such as moisture, ash, protein, and starch) in the past decade. Based on the current research progress, big data technology needs a lot of research in spectral data mining, modeling algorithm optimization, model robustness, etc. to provide more data support and method reference for the research and application of wheat quality.

Fermentation ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 104
Author(s):  
Claudia Gonzalez Viejo ◽  
Sigfredo Fuentes

Beer quality is a difficult concept to describe and assess by physicochemical and sensory analysis due to the complexity of beer appreciation and acceptability by consumers, which can be dynamic and related to changes in climate affecting raw materials, consumer preference, and rising quality requirements. Artificial intelligence (AI) may offer unique capabilities based on the integration of sensor technology, robotics, and data analysis using machine learning (ML) to identify specific quality traits and process modifications to produce quality beers. This research presented the integration and implementation of AI technology based on low-cost sensor networks in the form of an electronic nose (e-nose), robotics, and ML. Results of ML showed high accuracy (97%) in the identification of fermentation type (Model 1) based on e-nose data; prediction of consumer acceptability from near-infrared (Model 2; R = 0.90) and e-nose data (Model 3; R = 0.95), and physicochemical and colorimetry of beers from e-nose data. The use of the RoboBEER coupled with the e-nose and AI could be used by brewers to assess the fermentation process, quality of beers, detection of faults, traceability, and authentication purposes in an affordable, user-friendly, and accurate manner.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2474
Author(s):  
Cunjin Gao ◽  
Pengrui Zheng ◽  
Quanxiao Liu ◽  
Shuang Han ◽  
Dongli Li ◽  
...  

Rare Earth Upconversion nanoparticles (UCNPs) are a type of material that emits high-energy photons by absorbing two or more low-energy photons caused by the anti-stokes process. It can emit ultraviolet (UV) visible light or near-infrared (NIR) luminescence upon NIR light excitation. Due to its excellent physical and chemical properties, including exceptional optical stability, narrow emission band, enormous Anti-Stokes spectral shift, high light penetration in biological tissues, long luminescent lifetime, and a high signal-to-noise ratio, it shows a prodigious application potential for bio-imaging and photodynamic therapy. This paper will briefly introduce the physical mechanism of upconversion luminescence (UCL) and focus on their research progress and achievements in bio-imaging, bio-detection, and photodynamic therapy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yueqi Li ◽  
Qin Zhou ◽  
Shoubing Ding ◽  
Zhimin Wu

Metal oxide semiconductor gas sensing materials have attracted great research interest in the gas sensor field due to their outstanding physical and chemical properties, low cost, and easy preparation. Among them, two-dimensional hexagonal tungsten trioxide (2D h-WO3) is especially interesting because of its high sensitivity and selectivity to some gases. We firstly introduce the characteristics of 2D h-WO3 gas sensing materials and discuss the effects of microstructure, oxygen vacancy, and doping modification on the gas sensing properties of 2D h-WO3 mainly. Finally, we explore the application of 2D h-WO3 gas sensing materials and propose some research directions.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2974
Author(s):  
Navpreet Kaur ◽  
Mandeep Singh ◽  
Abderrahim Moumen ◽  
Giorgio Duina ◽  
Elisabetta Comini

For the last two decades, titanium dioxide (TiO2) has received wide attention in several areas such as in medicine, sensor technology and solar cell industries. TiO2-based gas sensors have attracted significant attention in past decades due to their excellent physical/chemical properties, low cost and high abundance on Earth. In recent years, more and more efforts have been invested for the further improvement in sensing properties of TiO2 by implementing new strategies such as growth of TiO2 in different morphologies. Indeed, in the last five to seven years, 1D nanostructures and heterostructures of TiO2 have been synthesized using different growth techniques and integrated in chemical/gas sensing. Thus, in this review article, we briefly summarize the most important contributions by different researchers within the last five to seven years in fabrication of 1D nanostructures of TiO2-based chemical/gas sensors and the different strategies applied for the improvements of their performances. Moreover, the crystal structure of TiO2, different fabrication techniques used for the growth of TiO2-based 1D nanostructures, their chemical sensing mechanism and sensing performances towards reducing and oxidizing gases have been discussed in detail.


2003 ◽  
Vol 11 (2) ◽  
pp. 83-95
Author(s):  
Nathalie Szydlowski-Zanier ◽  
Marc Berger ◽  
François Wahl ◽  
Denis Guillaume

The performance of a Fourier-transform near infrared (FT-NIR) spectrometer equipped with an autosampling accessory (AutoSamplIR) using disposable vials with uncontrolled pathlength has been compared with the performance of an FT-NIR equipped with a manual vial sampling accessory using a reusable cell with calibrated pathlength. The effect of different parameters such as the signal-to-noise ratio, the stability of the purge and the linearity of absorbance have been evaluated by means of the NIR predictions of two physico-chemical properties of interest for gasoils, i.e the wt% of hydrogen and the cetane number (CN). It has been shown that an FT-NIR with the autosampling accessory can be used advantageously at low cost for quick and precise analyses of small amounts of sample.


2000 ◽  
Vol 8 (3) ◽  
pp. 201-208 ◽  
Author(s):  
F.E. Barton ◽  
J.S. Shenk ◽  
M.O. Westerhaus ◽  
D.B. Funk

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Sign in / Sign up

Export Citation Format

Share Document