scholarly journals Recent Advances of Upconversion Nanomaterials in the Biological Field

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2474
Author(s):  
Cunjin Gao ◽  
Pengrui Zheng ◽  
Quanxiao Liu ◽  
Shuang Han ◽  
Dongli Li ◽  
...  

Rare Earth Upconversion nanoparticles (UCNPs) are a type of material that emits high-energy photons by absorbing two or more low-energy photons caused by the anti-stokes process. It can emit ultraviolet (UV) visible light or near-infrared (NIR) luminescence upon NIR light excitation. Due to its excellent physical and chemical properties, including exceptional optical stability, narrow emission band, enormous Anti-Stokes spectral shift, high light penetration in biological tissues, long luminescent lifetime, and a high signal-to-noise ratio, it shows a prodigious application potential for bio-imaging and photodynamic therapy. This paper will briefly introduce the physical mechanism of upconversion luminescence (UCL) and focus on their research progress and achievements in bio-imaging, bio-detection, and photodynamic therapy.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yan-Ge Tian ◽  
Zheng-Nan Zhang ◽  
Shuang-Qi Tian

Nondestructive testing with sensor technology is one of the fastest growing and most promising wheat quality information analysis technologies. Nondestructive testing with sensor technology benefits from the latest achievement of many disciplines such as computer, optics, mathematics, chemistry, and chemometrics. It has the advantages of simplicity, speed, low cost, no pollution, and no contact. It is widely used in wheat quality analysis and testing research. This article summarizes nondestructive testing with sensor technology for wheat quality, including the mechanical model, hyperspectral technology, Raman spectroscopy, and near-infrared techniques for wheat mechanical properties, storage properties, and physical and chemical properties (such as moisture, ash, protein, and starch) in the past decade. Based on the current research progress, big data technology needs a lot of research in spectral data mining, modeling algorithm optimization, model robustness, etc. to provide more data support and method reference for the research and application of wheat quality.


2016 ◽  
Vol 690 ◽  
pp. 120-125 ◽  
Author(s):  
Thanataon Pornpatdetaudom ◽  
Karn Serivalsatit

Upconversion luminescence materials have been proved to have a good efficiency on converting low energy light to high energy light. These materials have received considerable attentions for many applications such as bio-labels, sensors, using for developing solar cells and photocatalytic applications under sunlight. Among many inorganic host materials, NaYF4 has been proved to be the best for doping lanthanide ions and have a good upconversion emission due to its low phonon energy, chemical stability, and transparency in the near infrared to ultraviolet range. In this study, NaYF4:Yb3+,Tm3+ upconversion luminescence materials were synthesized by hydrothermal method at temperature of 90 to 200 °C for period between 1 to 24 hours. The synthesized NaYF4:Yb3+,Tm3+ were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectroscopy. The hydrothermal temperature and reaction time have strongly influence on phases and upconversion emission of the synthesized NaYF4:Yb3+,Tm3+. At 90 °C for 1 hour of reaction time, the pure cubic phase of NaYF4:Yb3+,Tm3+ was found. After increasing temperature and reaction time, the NaYF4:Yb3+,Tm3+ converted from cubic phase to hexagonal phase. Under excitation of 980 nm diode laser, the hexagonal NaYF4:Yb3+,Tm3+ exhibited the emission wavelength at about 656 nm (3F2 → 3H6), 469, 492, 552 nm (1G4 → 3H6), 537 nm (1D2 → 3H5), 450, 461 nm (1D2 → 3F4), 362 nm (1D2 → 3H6) and 345 nm (1I6 → 3F4). The upconversion emission intensity of the hexagonal NaYF4:Yb3+,Tm3+ was much stronger, compared with that of the cubic NaYF4:Yb3+,Tm3+.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 993 ◽  
Author(s):  
Oleksandr Savchuk ◽  
Joan Josep Carvajal Marti ◽  
Concepción Cascales ◽  
Patricia Haro-Gonzalez ◽  
Francisco Sanz-Rodríguez ◽  
...  

The bifunctional possibilities of Tm,Yb:GdVO4@SiO2 core-shell nanoparticles for temperature sensing by using the near-infrared (NIR)-excited upconversion emissions in the first biological window, and biolabeling through the visible emissions they generate, were investigated. The two emission lines located at 700 and 800 nm, that arise from the thermally coupled 3F2,3 and 3H4 energy levels of Tm3+, were used to develop a luminescent thermometer, operating through the Fluorescence Intensity Ratio (FIR) technique, with a very high thermal relative sensitivity. Moreover, since the inert shell surrounding the luminescent active core allows for dispersal of the nanoparticles in water and biological compatible fluids, we investigated the penetration depth that can be realized in biological tissues with their emissions in the NIR range, achieving a value of 0.8 mm when excited at powers of 50 mW. After their internalization in HeLa cells, a low toxicity was observed and the potentiality for biolabelling in the visible range was demonstrated, which facilitated the identification of the location of the nanoparticles inside the cells, and the temperature determination.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1951
Author(s):  
YuLing Yang ◽  
Ke Lin ◽  
Li Yang

Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 104
Author(s):  
Wei Wu ◽  
Wei Wei ◽  
Dingli Xu ◽  
Yunpeng Liu ◽  
Jin Li ◽  
...  

Near-infrared (NIR) region has been considered as a diagnostic window since it avoids sample autofluorescence and light scattering. Upconversion nanoparticles (UCNPs) convert NIR light into high energy excitation light, making them a suitable excitation source for nanoprobes with deep penetration depth and high signal-to-noise ratio. The current work reported a rhodamine-derived probe for the detection of Hg(II). Corresponding absorption and emission responses for Hg(II) and detailed recognizing mechanism were discussed. An absorption titration experiment was performed. It was found that Hg(II) directly bonded with probe with chemical stoichiometry of 1:1, its association constant was calculated as 2.59 × 105 M−1. Such a high value indicated a direct coordination affinity between Hg(II) and this rhodamine-derived probe. Most metal cations exerted no increasing effect on the probe emission or absorption, exhibiting good sensing selectivity of probe towards Hg(II). Upconversion nanoparticles (UCNPs) were firstly encapsulated with silica (SiO2) and then bonded with the probe via a covalent bond. Given a near-infrared (NIR) laser excitation with wavelength of 980 nm, this probe, (E)-2-((3′,6′-bis(diethylamino)-2′,7′-dimethyl-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)acetaldehyde (denoted as RHO), captured the energy of UCNPs via a FRET (fluorescence resonance energy transfer) path, resulting in the emission quenching of UCNPs. This composite system showed linear sensing behavior towards Hg(II) with high selectivity, which was similar to the case of pure probe. No probe emission, however, was observed from the composite system, which was different from the case of most literature reports. The self-quenching between probe molecules was claimed responsible for the probe emission, which was confirmed by experiment result and analysis. To the best of our knowledge, this is the first demonstration of covalently integrating SiO2-coated UCNPs with a rhodamine-derived probe for Hg(II) sensing.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21590-21599 ◽  
Author(s):  
Ruichan Lv ◽  
Chongna Zhong ◽  
Arif Kuhan Gulzar ◽  
Fei He ◽  
Rui Gu ◽  
...  

Yolk/shell mesoporous NaYF4:Yb,Er@MgSiO3–ZnPc–RGD spheres have been fabricated to combine photodynamic therapy (PDT) and bio-imaging for improved antitumor efficacy under NIR laser irradiation.


2020 ◽  
Author(s):  
Jing Zhou ◽  
Di Wu ◽  
Zikang Ye ◽  
Dingwei Xue ◽  
Mubin He ◽  
...  

AbstractAnti-Stokes fluorescence was observed in ICG, a molecule approved by the FDA for clinical use. The wavelengths of its fluorescence are mainly located in the near-infrared band of 800 nm~900 nm, with a high quantum yield up to 8%. In order to know its generation mechanism, based on multi-photon absorption (MPA) theory, thermally activated delayed fluorescence (TADF) theory and hot band absorption theory, its power dependence, temperature dependence of absorption spectra and fluorescence spectra, and fluorescence lifetime were measured. Its generation mechanism was finally determined to be hot band absorption process. Since ICG showed bright anti-Stokes fluorescence in near-infrared region, which offers substantially longer penetration depth in biological tissues than visible light, excellent photostability and biosafety, we applied it to in vivo imaging and compared it with upconversion nanoparticles (UCNPs). The result is that ICG exhibited much stronger fluorescence than UCNPs, providing more anatomical information of samples. This contributes to a better choice for anti-Stokes fluorescence bioimaging.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 648 ◽  
Author(s):  
Liu Zhou ◽  
Lin Sun ◽  
Lixin Xu ◽  
Chao Wan ◽  
Yue An ◽  
...  

Hydrogen energy is considered to be a desired energy storage carrier because of its high-energy density, extensive sources, and is environmentally friendly. The development of hydrogen storage material, especially liquid organic hydrogen carrier (LOHC), has drawn intensive attention to address the problem of hydrogen utilization. Hydrogen carrier is a material that can reversibly absorb and release hydrogen using catalysts at elevated temperature, in which LOHC mainly relies on the covalent bonding of hydrogen during storage to facilitate long-distance transportation and treatment. In this review, the chemical properties and state-of-the-art of LOHCs were investigated and discussed. It reviews the latest research progress with regard to liquid organic hydrogen storage materials, namely N-ethylcarbazole, and the recent progress in the preparation of efficient catalysts for N-ethylcarbazole dehydrogenation by using metal multiphase catalysts supported by carbon–nitrogen materials is expounded. Several approaches have been considered to obtain efficient catalysts such as increasing the surface area of the support, optimizing particle size, and enhancing the porous structure of the support. This review provides a new direction for the research of hydrogen storage materials and considerations for follow-up research.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Gaofeng Liang ◽  
Haojie Wang ◽  
Hao Shi ◽  
Haitao Wang ◽  
Mengxi Zhu ◽  
...  

Abstract Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.


Nano Research ◽  
2021 ◽  
Author(s):  
Florian Frenzel ◽  
Christian Würth ◽  
Oleksii Dukhno ◽  
Frédéric Przybilla ◽  
Lisa M. Wiesholler ◽  
...  

AbstractEnsemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core-shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels.


Sign in / Sign up

Export Citation Format

Share Document