scholarly journals Gastric Cancer in Young Adults: A Different Clinical Entity from Carcinogenesis to Prognosis

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jian Li

Approximately 5.0% of gastric cancer (GC) patients are diagnosed before the age of 40 and are not candidates for screening programs in most countries and regions. The incidence of gastric cancer in young adults (GCYA) has declined over time in most countries except in the United States. Genetic alterations, environmental factors, and lifestyle may predispose some young adults to GC. According to molecular classifications, the cancer of most GCYA patients belongs to the genomically stable or microsatellite stable/epithelial-mesenchymal transition subtype, with the common genetic aberrations being mutations in CDH1. What characterizes GCYA are a higher prevalence in females, more aggressive tumor behaviors, diagnosis at advanced stages, fewer comorbidities and being better treatment candidates, and a similar or better survival outcome when compared with older patients. Considering the greater loss of life-years in younger patients, lowering the incidence of GC and diagnosing at a relatively early stage are the two most effective ways to decrease GC mortality. To achieve these goals, the low awareness of GCYA among general people, policy-makers, clinicians, and researchers should be changed.

2021 ◽  
Author(s):  
Honghu Xie ◽  
Yu He ◽  
Yugang Wu ◽  
Qicheng Lu

Abstract Background: Gastric cancer (GC) is the second leading cause of cancer-related deaths. Because it is hard to diagnose at early stage, the overall 5 years survival rate is lower than 25%. High migration is the main hallmark of malignant cells at advanced stage of GC. Thus, it is urgent to find biomarkers for early diagnosis and more effective therapy of GC.Methods: In this study, silencing and overexpression lentiviruses targeting the ubiquitin-conjugating enzyme E2 D1 (UBE2D1), transwell, wound healing, and pulmonary metastasis mouse model were applied to analyze the function of UBE2D1 in vitro and in vivo. Real-time PCR and immunohistochemistry were used to elucidate the level of UBE2D1 in GC samples.Results: Silencing of UBE2D1 inhibited cell migration and the levels of Epithelial-mesenchymal transition (EMT) makers (MMP2 and MMP9) in AGS and MKN45 cells. Silencing of UBE2D1 inhibited cell metastasis in mouse model. On the contrary, UBE2D1 overexpression increased cell migration and the levels of MMP2 and MMP9 in MGC-803 cells. Further, silencing of UBE2D1 decreased the ubiquitination level of mothers against decapentaplegic homolog 4 (SMAD4), and the increase of cell migration induced by UBE2D1 overexpression could be reversed by SMAD4.Conclusion: Silencing of UBE2D1 inhibited cell migration through transforming growth factor β (TGF-β)/SMAD4 signaling pathway in GC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Honghu Xie ◽  
Yu He ◽  
Yugang Wu ◽  
Qicheng Lu

Abstract Background Gastric cancer (GC) is the second leading cause of cancer-related deaths. Because it is hard to diagnose at early stage, the overall 5 years survival rate is lower than 25%. High migration is the main hallmark of malignant cells at advanced stage of GC. Thus, it is urgent to find biomarkers for early diagnosis and more effective therapy of GC. Methods In this study, lentivirus-mediated silencing and overexpression lentiviruses targeting the ubiquitin-conjugating enzyme E2 D1 (UBE2D1), transwell, wound healing, and pulmonary metastasis mouse model were applied to analyze the function of UBE2D1 in vitro and in vivo. Real-time PCR and immunohistochemistry were used to elucidate the level of UBE2D1 in GC samples. Results Silencing of UBE2D1 inhibited cell migration and the levels of epithelial-mesenchymal transition makers (MMP2 and MMP9) in AGS and MKN45 cells. Silencing of UBE2D1 inhibited cell metastasis in mouse model. On the contrary, UBE2D1 overexpression increased cell migration and the levels of MMP2 and MMP9 in MGC-803 cells. Further, silencing of UBE2D1 decreased the ubiquitination level of mothers against decapentaplegic homolog 4 (SMAD4), and the increase of cell migration induced by UBE2D1 overexpression could be reversed by SMAD4. Conclusion Silencing of UBE2D1 inhibited cell migration through transforming growth factor β (TGF-β)/SMAD4 signaling pathway in GC.


2020 ◽  
Vol 04 (04) ◽  
Author(s):  
Shuai Ruan ◽  
Wenjie Huang ◽  
Fang Wen ◽  
Xiaona Lu ◽  
Su Ping Gu ◽  
...  

2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wanting Song ◽  
Yi Bai ◽  
Jialin Zhu ◽  
Fanxin Zeng ◽  
Chunmeng Yang ◽  
...  

Abstract Background Gastric cancer (GC) represents a major malignancy and is the third deathliest cancer globally. Several lines of evidence indicate that the epithelial-mesenchymal transition (EMT) has a critical function in the development of gastric cancer. Although plentiful molecular biomarkers have been identified, a precise risk model is still necessary to help doctors determine patient prognosis in GC. Methods Gene expression data and clinical information for GC were acquired from The Cancer Genome Atlas (TCGA) database and 200 EMT-related genes (ERGs) from the Molecular Signatures Database (MSigDB). Then, ERGs correlated with patient prognosis in GC were assessed by univariable and multivariable Cox regression analyses. Next, a risk score formula was established for evaluating patient outcome in GC and validated by survival and ROC curves. In addition, Kaplan-Meier curves were generated to assess the associations of the clinicopathological data with prognosis. And a cohort from the Gene Expression Omnibus (GEO) database was used for validation. Results Six EMT-related genes, including CDH6, COL5A2, ITGAV, MATN3, PLOD2, and POSTN, were identified. Based on the risk model, GC patients were assigned to the high- and low-risk groups. The results revealed that the model had good performance in predicting patient prognosis in GC. Conclusions We constructed a prognosis risk model for GC. Then, we verified the performance of the model, which may help doctors predict patient prognosis.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153
Author(s):  
Sabrina Daniela da Silva ◽  
Fabio Albuquerque Marchi ◽  
Jie Su ◽  
Long Yang ◽  
Ludmila Valverde ◽  
...  

Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.


2019 ◽  
Vol 20 (15) ◽  
pp. 3736 ◽  
Author(s):  
Sabino Russi ◽  
Henu Kumar Verma ◽  
Simona Laurino ◽  
Pellegrino Mazzone ◽  
Giovanni Storto ◽  
...  

Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.


2009 ◽  
Vol 20 (24) ◽  
pp. 5127-5137 ◽  
Author(s):  
Kai-Wen Hsu ◽  
Rong-Hong Hsieh ◽  
Chew-Wun Wu ◽  
Chin-Wen Chi ◽  
Yan-Hwa Wu Lee ◽  
...  

The c-Myc promoter binding protein 1 (MBP-1) is a transcriptional suppressor of c-myc expression and involved in control of tumorigenesis. Gastric cancer is one of the most frequent neoplasms and lethal malignancies worldwide. So far, the regulatory mechanism of its aggressiveness has not been clearly characterized. Here we studied roles of MBP-1 in gastric cancer progression. We found that cell proliferation was inhibited by MBP-1 overexpression in human stomach adenocarcinoma SC-M1 cells. Colony formation, migration, and invasion abilities of SC-M1 cells were suppressed by MBP-1 overexpression but promoted by MBP-1 knockdown. Furthermore, the xenografted tumor growth of SC-M1 cells was suppressed by MBP-1 overexpression. Metastasis in lungs of mice was inhibited by MBP-1 after tail vein injection with SC-M1 cells. MBP-1 also suppressed epithelial-mesenchymal transition in SC-M1 cells. Additionally, MBP-1 bound on cyclooxygenase 2 (COX-2) promoter and downregulated COX-2 expression. The MBP-1-suppressed tumor progression in SC-M1 cells were through inhibition of COX-2 expression. MBP-1 also exerted a suppressive effect on tumor progression of other gastric cancer cells such as AGS and NUGC-3 cells. Taken together, these results suggest that MBP-1–suppressed COX-2 expression plays an important role in the inhibition of growth and progression of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document