scholarly journals The Regulatory Effect of MicroRNA-101-3p on Disc Degeneration by the STC1/VEGF/MAPK Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Juehan Wang ◽  
Leizhen Huang ◽  
Xi Yang ◽  
Ce Zhu ◽  
Yong Huang ◽  
...  

Aims. Accumulating evidence reported that the microRNA (miRNA) took an important role in intervertebral disc degeneration (IDD). In this study, we revealed a novel miRNA regulatory mechanism in IDD. Main Methods. The miRNA microarray analyses of human degenerated and normal disc samples were employed to screen out the target miRNA. In vitro and in vivo experiments were conducted to verify the regulatory effect of miR-101-3p. Key Findings. The expression level of miR-101-3p was significantly decreased in the degenerated disc samples which were confirmed by qRT-PCR. Moreover, the miR-101-3p expression level was changed dynamically according to the disc degeneration grade. Upregulation of miR-101-3p expression level inhibited cell apoptosis. Furthermore, stanniocalcin-1 (STC1) was selected to be the target gene of miR-101-3p according to the bioinformatic algorithms. Mechanically, upregulation of miR-101-3p significantly decreased the expression of STC1, vascular endothelial growth factor (VEGF), and MAPK pathway expression levels. Therapeutically, in vivo experiment on IDD rat model illustrated that agomir-101-3p could effectively suspend IDD. Significance. Our findings demonstrated that miR-101-3p alleviated IDD process through the STC1/VEGF/MAPK pathway.

2020 ◽  
Author(s):  
Hongyu Zheng ◽  
Tingting Wang ◽  
Xiangmin Li ◽  
Wei He ◽  
Zhiqiang Gong ◽  
...  

Abstract Background: Intervertebral disc degeneration (IDD) is characterized by the loss of nucleus pulposus cells (NPCs) and phenotypic abnormalities. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are involved in the pathogenesis of IDD. In this study, we aimed to investigate the functional effects of lncRNA MALAT1 on NPCs in IDD and the possible mechanism governing these effects. Results: We validated the decreased expression of MALAT1 in the IDD tissues, which was associated with decreased Collagen II and Aggrecan expression. In vitro, overexpressed MALAT1 could attenuate the effect of IL-1β on NPC proliferation, apoptosis, and Aggrecan degradation. In vivo, MALAT1 overexpression attenuated the severity of disc degeneration in IDD model rats. Our molecular study further demonstrated that MALAT1 could sponge miR-503, modulate the expression of miR-503, and activate downstream MAPK signaling pathways. The effects of MALAT1 on NPCs were partially reversed/aggregated by miR-503 mimics/inhibitor treatment. Conclusion: Our data suggested that the MALAT1-miR-503-MAPK pathway plays a critical role in NPCs, which may be a potential strategy for alleviating IDD.


Dose-Response ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 155932582110421
Author(s):  
Huapeng Sun ◽  
Na Zhang ◽  
Yiqiang Jin ◽  
Haisheng Xu

Cardamonin (CAR), a flavone existing in the Alpinia plant, has been found to modulate multiple biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects. Nevertheless, the influence of CAR on pancreatic cancer (PC) is less understood. Here, we conducted in vitro and in vivo experiments to explore the functions of CAR on PC cells’ proliferation, apoptosis and chemosensitivity to gemcitabine (GEM). The growth of PC cells (including PANC-1 and SW1990) was evaluated by the cell counting kit-8 assay, colony formation assay and xenograft tumor experiment. Besides, the apoptosis was determined by flow cytometry and western blot (WB). Moreover, the FOXO3a-FOXM1 pathway expression was tested by reverse transcription-polymerase chain reaction and WB. Our data suggested that CAR restrained cell proliferation, growth and expedited apoptosis both in vitro and in vivo. Moreover, CAR sensitized PC cells to GEM. Mechanistically, CAR heightened FOXO3a while repressed FOXM1. Further loss-of-function assays revealed that down-regulating FOXO3a markedly dampened the anti-tumor effect induced by CAR and accelerated the FOXM1 expression. Our data confirmed that CAR exerted an anti-tumor function in PC dependently by modulating the FOXO3a-FOXM1 axis.


2019 ◽  
Vol 56 (6) ◽  
pp. 753-759
Author(s):  
N. M. Savushkina ◽  
E. A. Galushko ◽  
N. V. Demidova ◽  
A. V. Gordeev

At present, the role of the renin-angiotensin system (RAS) in regulating the cardiovascular system and maintaining water and electrolyte homeostasis has been well studied. However, over the past decades, new components of the RAS have been identified, suggesting a wider range of its potential effects on the body. It is of fundamentally importance for rheumatologists to affect inflammation, including rheumatoid inflammation, through blockade of angiotensin (AT) II formation via the effects of AT 1–7 and angiotensin-converting enzyme inhibitors, as well as through suppression of angiogenesis, primarily by reducing the production of endothelial growth factor. The organ-protective and antiinflammatory potential of drugs that reduce the production of AT, which has been proven in in vitro and in vivo experiments, allows us to consider them as first-line angiotropic agents in patients with rheumatoid arthritis, especially in the presence of concomitant hypertension and/or nephropathy.


2019 ◽  
Author(s):  
Hongyu Zheng ◽  
Tingting Wang ◽  
Xiangmin Li ◽  
Wei He ◽  
Zhiqiang Gong ◽  
...  

Abstract Background: Intervertebral disc degeneration (IDD) is characterized by the loss of nucleus pulposus cells (NPCs) and phenotypic abnormalities. Accumulated evidence suggests that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of IDD. In this study, we aimed to investigate the functional effects of lncMALAT1 on NPCs in IDD and the possible mechanism. Results: We validated the decreased expression of MALAT1 in the IDD tissues, associating with increased collagen II and aggrecan expression. In vitro, overexpressed MALAT1 could attenuate the effect of IL-1β on NPCs proliferation, apoptosis, and aggrecan degradation. In vivo, MALAT1 overexpression attenuated the severity of disc degeneration in IDD model rats. Our molecular study further demonstrated that MALAT1 could sponge miR-503, modulate the expression of miR-503, and the activation of downstream MAPK signaling pathways. The effects of MALAT1 on NPCs were partially reversed/ aggregated by miR-503 mimics/inhibitor treatment. Conclusion: Our data suggested that MALAT1-miR-503-MAPK pathway plays a critical role in NPCs, which may be a potential strategy for improving IDD.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yvang Chang ◽  
Ming Yang ◽  
Song Ke ◽  
Yu Zhang ◽  
Gang Xu ◽  
...  

Intervertebral disc degeneration (IDD) is a globally occurring disease that represents a significant cause of socioeconomic problems. Currently, the main method for treating IDD is surgery, including discectomy and vertebral fusion. Several in vitro experiments demonstrated that platelet-rich plasma (PRP) could stimulate cell proliferation and extracellular matrix regeneration. Additionally, in vivo experiments have proven that PRP injection could restore intervertebral disc height. Clinical studies demonstrated that PRP injection could significantly relieve patient pain. However, further studies are still required to clarify the roles of PRP in IDD prevention and treatment. This review is aimed at summarizing and critically analyzing the current evidence regarding IDD treatment with PRP.


2020 ◽  
Vol 19 (2) ◽  
pp. 164-171
Author(s):  
Feng Xue ◽  
Tingting Chen

Glioblastoma multiforme is the most common malignancy of central nervous system. Herein we have evaluated the effect of L-tetrahydropalmatine, an isoquinoline alkaloid, on the tumor growth both in vivo and in vitro using C6 glioblastoma multiforme cells and BALB/c mice injected subcutaneously with C6/luc2 cells. The results of these studies show that L-tetrahydropalmatine exhibited cytotoxic effect on C6 glioblastoma multiforme cells, suppressed nuclear factor-kappa B activity, suppressed the levels of tumor-linked proteins such as matrix metalloproteinase-2/9, Cyclin-D1, vascular endothelial growth factor, and X-linked inhibitor of apoptosis protein via ERK/nuclear factor-kappa B cascade. Further, L-tetrahydropalmatine inhibited the cell migration and invasion properties of C6 cells, and also suppressed the tumor weight and volume in mice. Immunohistochemical staining of tumor tissues suggested that L-tetrahydropalmatine inhibited the extracellular-signal-regulated kinase/nuclear factor-kappa B cascade and suppressed the levels of Cyclin-D1; matrix metalloproteinase-2/9; X-linked inhibitor of apoptosis protein; and vascular endothelial growth factor, and also the progression and growth of glioblastoma multiforme in mice. In summary, L-tetrahydropalmatine inhibits the ERK/nuclear factor-kappa B cascade, decreases the tumor volume, and inhibits the proteins responsible for tumor growth both in vivo and in vitro.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


Sign in / Sign up

Export Citation Format

Share Document