scholarly journals Design Optimization and Burst Speed Prediction of a Ti2AlNb Blisk

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yue Guo ◽  
Yi-xiong Liu ◽  
Yun-wu Wu ◽  
Hang Cao ◽  
Da Mo

The increasing demand for power, fuel efficiency, and safety of aeroengines has called for weight reduction and structural integrity examination of the critical components. This paper is aimed at performing a systematic investigation on the design of a high-speed Ti2AlNb blisk, including disc geometry optimization and burst speed prediction. Incorporating the design of the experimental approach and the commercial software has guaranteed that the optimization could be accomplished. Six key parameters were defined as variables with regard to the geometric dimensions whereas the safety factors were set as constraints to make the disc feasible. Sensitivity analysis has been conducted to study the effects of the variables on the safety factors and disc weight. Bore width, web width, and bore angle are identified to be the dominant factors regarding optimization. Results reveal that the bore width and web width are positively related to the safety factors at the cost of increasing the disc weight. On the contrary, the effects of the bore angle show the opposite trend. Finally, the achieved minimum disc weight is 15.2 kg with all the safety factors meeting the requirements. Upon completing the disc shape optimization, the burst speed was estimated using three elaborated methods. The comparisons between the numerical results and the experimental results indicate that the mean stress method is accurate when the correction coefficient is chosen properly. The local stress and strain method and the global plastic instability method also offer a precise prediction on the burst speed with errors of less than 5%. It could also be concluded that the predicted web failure in the radial direction of the disc is in good agreement with the experimental results.

Author(s):  
E. L. N. Rohit Madhukar ◽  
Harish Panjagala

The recent introduction of spike in the frontal region of high speed reentry vehicles has brought a tremendous improvement in space activities in the world. The major issue that the spikes resolves is aero heating of re-entry vehicles. Moreover, it preserves structural integrity and avoids damage. Usage of spike is economical and effective over different kinds of thermal protection system. Previous investigation on spiked re-entry vehicles leads to a conclusion that the Blunt and Snap spikes resulted in better reduction of temperature at nose of re-entry vehicle. This paper deals with geometry optimization of blunt and snap spike specifically the length, which is varied as L/8, L/4 and 3L/8 respectively where L is the length of the vehicle. ANSYS 17.2 FLUENT solver is incorporated for analysis purpose and the results are compared among the three different length spike re-entry vehicles. Modal analysis has also been carried out and natural frequency of spikes are obtained. This would provide a way to accept the safe and economical design with better thermal protection of the high-speed space vehicle.


Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


2007 ◽  
Vol 340-341 ◽  
pp. 283-288 ◽  
Author(s):  
Jung Han Song ◽  
Hoon Huh

The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic material properties of the Inconel 718 alloy which is widely used in the high speed turbine blade. The dynamic response at the corresponding level of the strain rate should be acquired with an adequate experimental technique and apparatus due to the inertia effect and the stress wave propagation. In this paper, the dynamic response of the Inconel 718 at the intermediate strain rate ranged from 1/s to 400/s is obtained from the high speed tensile test and that at the high strain rate above 1000/s is obtained from the split Hopkinson pressure bar test. The effects of the strain rate on the dynamic flow stress, the strain rate sensitivity and the failure elongation are evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 3000/s are interpolated in order to construct the constitutive relation that should be applied to simulate the dynamic behavior of the turbine blade made of the Inconel 718.


Author(s):  
Daigo Watanabe ◽  
Kiminobu Hojo

This paper introduces an example of structural integrity evaluation for Light Water Reactor (LWR) against excessive loads on the Design Extension Condition (DEC). In order to assess the design acceptance level of DEC, three acceptance criteria which are the stress basis limit of the current design code, the strain basis limit of the current design code and the strain basis limit by using Load and Resistance Factor Design (LRFD) method were applied. As a result the allowable stress was increased by changing the acceptance criteria from the stress basis limit to the strain basis limit. It is shown that the practical margin of the LWR’s components still keeps even on DEC by introducing an appropriate criterion for integrity assessment and safety factors.


1996 ◽  
Vol 61 (6) ◽  
pp. 856-867 ◽  
Author(s):  
Oldřich Brůha ◽  
Ivan Fořt ◽  
Pavel Smolka ◽  
Milan Jahoda

The frequency of turbulent macroinstability occurrence was measured in liquids agitated in a cylindrical baffled vessel. As it has been proved by preceding experimental results of the authors, the stochastic quantity with frequency of occurrence of 10-1 to 100 s-1 is concerned. By suitable choosing the viscosity of liquids and frequency of impeller revolutins, the region of Reynolds mixing numbers was covered from the pure laminar up to fully developed turbulent regime. In addition to the equipment making it possible to record automatically the macroinstability occurrence, also the visualization method and videorecording were employed. It enabled us to describe in more detail the form of entire flow field in the agitated system and its behaviour in connection with the macroinstability occurrence. It follows from the experiments made that under turbulent regime of flow of agitated liquids the frequency of turbulent macroinstability occurrence is the same as the frequency of the primary circulation of agitated liquid.


2011 ◽  
Vol 130-134 ◽  
pp. 2245-2248
Author(s):  
Yong Hong Ma ◽  
Chong Xiang Zhang ◽  
Pan Zhang

we demonstrate a wavelength interleaved DWDM Radio-over-Fiber (ROF) system for providing 1-Gb/s OFDM signal in downlink and 1-Gb/s OOK data in uplink simultaneously. In this scheme, we use only one arrayed waveguide grating device at the remote node to realize both the de-multiplexing and multiplexing functions. The experimental results demonstrate that this scheme is feasible to the future broadband high-speed OFDM-ROF access system.


2002 ◽  
Vol 125 (1) ◽  
pp. 257-262 ◽  
Author(s):  
T. Kaemming

The pulsed detonation engine (PDE) is a unique propulsion system that uses the pressure rise associated with detonations to efficiently provide thrust. A study was conducted under the direction of the NASA Langley Research Center to identify the flight applications that provide the greatest potential benefits when incorporating a PDE propulsion system. The study was conducted in three phases. The first two phases progressively screened a large matrix of possible applications down to three applications for a more in-depth, advanced design analysis. The three applications best suited to the PDE were (1) a supersonic tactical aircraft, (2) a supersonic strike missile, and (3) a hypersonic single-stage-to-orbit (SSTO) vehicle. The supersonic tactical aircraft is the focus of this paper. The supersonic, tactical aircraft is envisioned as a Mach 3.5 high-altitude reconnaissance aircraft with possible strike capability. The high speed was selected based on the perceived high-speed fuel efficiency benefits of the PDE. Relative to a turbo-ramjet powered vehicle, the study identified an 11% to 21% takeoff gross weight (TOGW) benefit to the PDE on the baseline 700 n.mi. radius mission depending on the assumptions used for PDE performance and mission requirements. The TOGW benefits predicted were a result of the PDE lower cruise specific fuel consumption (SFC) and lower vehicle supersonic drag. The lower vehicle drag resulted from better aft vehicle shaping, which was a result of better distribution of the PDE cross-sectional area. The reduction in TOGW and fuel usage produced an estimated 4% reduction in life cycle cost for the PDE vehicle. The study also showed that the simplicity of the PDE enables concurrent engineering development of the vehicle and engine.


Author(s):  
Ramesh Talreja

Structural integrity of composite materials is governed by failure mechanisms that initiate at the scale of the microstructure. The local stress fields evolve with the progression of the failure mechanisms. Within the full span from initiation to criticality of the failure mechanisms, the governing length scales in a fibre-reinforced composite change from the fibre size to the characteristic fibre-architecture sizes, and eventually to a structural size, depending on the composite configuration and structural geometry as well as the imposed loading environment. Thus, a physical modelling of failure in composites must necessarily be of multi-scale nature, although not always with the same hierarchy for each failure mode. With this background, the paper examines the currently available main composite failure theories to assess their ability to capture the essential features of failure. A case is made for an alternative in the form of physical modelling and its skeleton is constructed based on physical observations and systematic analysis of the basic failure modes and associated stress fields and energy balances. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


1968 ◽  
Vol 5 (01) ◽  
pp. 63-71
Author(s):  
Philip J. Danahy

The paper presents a method for the determination of the critical minimum scantlings for small high-speed vessels. Particular attention is given to the shell plating strength for hydrodynamic impact loads. The suggested method uses an integrated approach involving assumed loads, suggested safety factors, and preferred stress-analysis method. The stress analysis uses plastic theory based partly on the works of J. Clarkson and Thein Wah. Included in the paper is a comparison of the relative structural strength of several commercial, military, and experimental hydrofoil vessels along with a few planing boats and a seaplane hull. This shows the variation of existing vessel structures and compares them to the results obtained by the suggested method. Most commercial, military, and recreational vessels exceed the minimum scantlings of the suggested method. The most significant deviation is the hull of the seaplane:


Author(s):  
Deqi Yu ◽  
Xiaojun Zhang ◽  
Jiandao Yang ◽  
Kai Cheng ◽  
Weilin Shu ◽  
...  

Fir-tree root and groove profiles are widely used in gas turbine and steam turbine. Normally, the fir-tree root and groove are characterized with straight line, arc or even elliptic fillet and splines, then the parameters of these features were defined as design variables to perform root profile optimization. In ultra-long blades of CCPP and nuclear steam turbines and high-speed blades of industrial steam turbine blades, both the root and groove strength are the key challenges during the design process. Especially, in industrial steam turbines, the geometry of blade is very small but the operation velocity is very high and the blade suffers stress concentration severely. In this paper, two methods for geometry configuration and relevant optimization programs are described. The first one is feature-based using straight lines and arcs to configure the fir-tree root and groove geometry and genetic algorithm for optimization. This method is quite fit for wholly new root and groove design. And the second local optimization method is based on B-splines to configure the geometry where the local stress concentration occurs and the relevant optimization algorithm is used for optimization. Also, several cases are studied as comparison by using the optimization design platform. It can be used not only in steam turbines but also in gas turbines.


Sign in / Sign up

Export Citation Format

Share Document