scholarly journals Clostridium butyricum Protects IPEC-J2 Cells from ETEC K88-Induced Oxidative Damage by Activating the Nrf2/ARE Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Caixia Dou ◽  
Zhiyuan Shang ◽  
Jiayun Qiao ◽  
Yimeng Wang ◽  
Haihua Li

Clostridium butyricum (CB) is a naturally occurring probiotic compound that can alleviate the oxidative damage induced by enterotoxigenic Escherichia coli K88 (ETEC K88) in porcine intestinal epithelial (IPEC-J2) cells. In this study, we investigate the molecular mechanism underlying this effect. Based on cell viability, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) assessments, the optimal concentration of ETEC K88 was determined to be 1 × 10 3  cfu/mL. Viable bacteria counts in cells pretreated with CB and then infected with ETEC K88 show that CB can adhere to IPEC-J2 cells and that optimal adhesion is achieved at the multiple infection index (MOI) of 50 at 3 h of pretreatment. The results of qPCR indicate that although ETEC significantly decreases the expression levels of antioxidant enzymes regulated by NF-E2-related factor 2 (Nrf2) compared to the control group, CB reverses this effect. To confirm that Nrf2 is directly involved in the mechanism by which CB alleviates oxidative stress, siRNA was used to silence the expression of Nrf2 gene in IPEC-J2 cells. Compared to the NC+ETEC and siRNA+ETEC groups, the expressions of SOD1, SOD2, GPX1, and GPX2 in the NC+CB+ETEC and siRNA+CB+ETEC groups are significantly increased at 12 h and 24 h. This shows that CB can reduce ETEC K88-induced oxidative damage in IPEC-J2 cells by activating the expression of antioxidant enzymes implicated in the Kelch-like ECH-associated protein-1- (Keap1-) Nrf2/antioxidant response element (ARE) signaling pathway.

2021 ◽  
Vol 12 ◽  
Author(s):  
Haihua Li ◽  
Zhiyuan Shang ◽  
Xuejiao Liu ◽  
Yingying Qiao ◽  
Kewei Wang ◽  
...  

Clostridium butyricum (CB) can enhance antioxidant capacity and alleviate oxidative damage, but the molecular mechanism by which this occurs remains unclear. This study used enterotoxigenic Escherichia coli (ETEC) K88 as a pathogenic model, and the p62-Keap1-Nrf2 signaling pathway and intestinal microbiota as the starting point to explore the mechanism through which CB alleviates oxidative damage. After pretreatment with CB for 15 d, mice were challenged with ETEC K88 for 24 h. The results suggest that CB pretreatment can dramatically reduce crypt depth (CD) and significantly increase villus height (VH) and VH/CD in the jejunum of ETEC K88-infected mice and relieve morphological lesions of the liver and jejunum. Additionally, compared with ETEC-infected group, pretreatment with 4.4×106 CFU/mL CB can significantly reduce malondialdehyde (MDA) level and dramatically increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in the serum. This pretreatment can also greatly increase the mRNA expression levels of tight junction proteins and genes related to the p62-Keap1-Nrf2 signaling pathway in the liver and jejunum in ETEC K88-infected mice. Meanwhile, 16S rDNA amplicon sequencing revealed that Clostridium disporicum was significantly enriched after ETEC K88 challenge relative to the control group, while Lactobacillus was significantly enriched after 4.4×106 CFU/mL CB treatment. Furthermore, 4.4×106 CFU/mL CB pretreatment increased the short-chain fatty acid (SCFA) contents in the cecum of ETEC K88-infected mice. Moreover, we found that Lachnoclostridium, Roseburia, Lactobacillus, Terrisporobacter, Akkermansia, and Bacteroides are closely related to SCFA contents and oxidative indicators. Taken together, 4.4×106 CFU/mL CB pretreatment can alleviate ETEC K88-induced oxidative damage through activating the p62-Keap1-Nrf2 signaling pathway and remodeling the cecal microbiota community in mice.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 234 ◽  
Author(s):  
Yea Seong Ryu ◽  
Pincha Devage Sameera Madushan Fernando ◽  
Kyoung Ah Kang ◽  
Mei Jing Piao ◽  
Ao Xuan Zhen ◽  
...  

In this study, we aimed to illustrate the potential bio-effects of 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on the antioxidant/cytoprotective enzyme heme oxygenase-1 (HO-1) in keratinocytes. The antioxidant effects of 3-BDB were examined via reverse transcription PCR, Western blotting, HO-1 activity assay, and immunocytochemistry. Chromatin immunoprecipitation analysis was performed to test for nuclear factor erythroid 2-related factor 2 (Nrf2) binding to the antioxidant response element of the HO-1 promoter. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cytoprotective effects of 3-BDB were mediated by the activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, Akt) signaling. Moreover, 3-BDB induced the phosphorylation of ERK and Akt, while inhibitors of ERK and Akt abrogated the 3-BDB-enhanced levels of HO-1 and Nrf2. Finally, 3-BDB protected cells from H2O2- and UVB-induced oxidative damage. This 3-BDB-mediated cytoprotection was suppressed by inhibitors of HO-1, ERK, and Akt. The present results indicate that 3-BDB activated Nrf2 signaling cascades in keratinocytes, which was mediated by ERK and Akt, upregulated HO-1, and induced cytoprotective effects against oxidative stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
M. Majzunova ◽  
M. Kvandova ◽  
A. Berenyiova ◽  
P. Balis ◽  
I. Dovinova ◽  
...  

Deficiency of nitric oxide (NO) and oxidative stress can be a cause, a consequence, or, more often, a potentiating factor for hypertension and hypertensive renal disease. Both NO and superoxide anions are radical molecules that interact with each other, leading to oxidative damage of such organs as the kidney. In the present study, we investigated the effect of chronic-specific (neuronal NOS inhibition) and nonspecific NOS inhibition on the oxidative state and antioxidant response and associated oxidative damage of the kidney of young normotensive and hypertensive rats. Young male normotensive Wistar rats (WRs, age 4 weeks) and spontaneously hypertensive rats (SHRs, age 4 weeks) were divided into three groups for each strain by the type of administered compounds. The first group was treated with 7-nitroindazole (WR+7-NI; SHR+7-NI), the second group was treated with N(G)-nitro-L-arginine-methyl ester (WR+L-NAME; SHR+L-NAME), and the control group was treated with pure drinking water (WR; SHR) continuously for up to 6 weeks. Systolic blood pressure increased in WR+L-NAME after the first week of administration and increased slightly in SHR+L-NAME in the third week of treatment. 7-NI had no effect on blood pressure. While total NOS activity was not affected by chronic NOS inhibition in any of the WR groups, it was attenuated in SHR+7-NI and SHR+L-NAME. Nitration of proteins (3-nitrotyrosine expression) was significantly reduced in WR+7NI but not in WR+L-NAME and increased in SHR+7-NI and SHR+L-NAME. Immunoblotting analysis of SOD isoforms showed decreased SOD2 and SOD3 expressions in both WR+7-NI and WR+L-NAME followed by increased SOD activity in WR+L-NAME. Conversely, increased expression of SOD2 and SOD3 was observed in SHR+L-NAME and SHR+7-NI, respectively. SOD1 expression and total activity of SOD did not change in the SHR groups. Our results show that the antioxidant defense system plays an important role in maintaining the oxidative state during NO deficiency. While the functioning antioxidant system seeks to balance the oxidation state in the renal cortex of normotensive WRs, the impaired antioxidant activity leads to the development of oxidative damage of proteins in the kidney induced by peroxynitrite in SHRs.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Zhongyuan Mu ◽  
Hongling Zhang ◽  
Peng Lei

Abstract As a major bioactive compound from grapes, piceatannol (PIC) has been reported to exert anti-atherosclerotic activity in various studies. Nevertheless, the mechanism underlying the effect of piceatannol against atherosclerosis (AS) is elusive. Our study identified miR-200a/Nrf2/GSDMD signaling pathway as critical mediators in the effect of piceatannol on macrophages. In the present study, we confirmed that treatment of piceatannol repressed the oxLDL-induced lipid storage in macrophages. Compared with control group, piceatannol inhibited TG storage and the activity of caspase1. It is noting that in response to oxLDL challenge, piceatannol abated the pyroptosis in RAW264.7 cells, with a decreased expression of caspase1, gasdermin D (GSDMD), IL-18, IL-1β and NLRP3. Moreover, we investigated the role of microRNA (miR)-200a/Nrf2 signaling pathway in the effect of piceatannol. The results declared that after transfection of si-miR-200a or si-Nrf2 plasmids, the effects of piceatannol on macrophages were converted, including lipid storage and pyroptosis. Importantly, si-miR-200a plasmid reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), indicating that miR-200a acted as an enhancer of Nrf2 in macrophages. Collectively, our findings demonstrate that piceatannol exerts anti-atherosclerotic activity on RAW264.7 cells by regulating miR-200a/Nrf2/GSDMD signaling. The present study is the first time to identify miR-200a as a candidate target in AS and declared an association between miR-200a and pyroptosis, which provides a novel therapy for the treatment of AS.


2019 ◽  
Vol 35 (3) ◽  
pp. 211-227 ◽  
Author(s):  
Zhipeng Qi ◽  
Chao Mi ◽  
Fengdi Wu ◽  
Xinxin Yang ◽  
Yanqi Sang ◽  
...  

There are limited studies focused on the precise mechanism of gonadotropin-releasing hormone (GnRH) secretion dysfunction after overexposure to manganese (Mn). The objective of the present study was to explore the mechanism of Mn disruption of GnRH synthesis via nuclear factor erythroid-2-related factor-2 (Nrf2)/metabotropic glutamate receptor-5 (mGluR5)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) signaling pathway in vitro and in vivo. Primary astrocytes were cultured and treated with different doses of Mn, tert-butylhydroquinonet (tBHQ; Nrf2 agonists), 3-[(2-methyl-4-thaizolyl) ethynyl] pyridine (MTEP; mGluR5 inhibitor), and celecoxib (COX-2 inhibitor) to measure the levels of COX-2, mGluR5, Nrf2, and Nrf2 target genes. Mice were randomly divided into 11 groups, of which included the control group, 12.5-, 25-, and 50-mg/kg MnCl2 group, dimethyl sulfoxide (DMSO) group, tBHQ control group, tBHQ pretreatment group, MTEP control group, MTEP pretreatment group, celecoxib control group, and celecoxib pretreatment group. The injection was administered every day for 2 weeks. Then, levels of GnRH, PGE2, COX-2, mGluR5, Nrf2, Nrf2 target genes, and morphological changes in the hypothalamus of mice were measured. Mn reduced protein levels of Nrf2 and mRNA expression of Nrf2 target genes and increased mGluR5, COX-2, PGE2, and GnRH levels. Meanwhile, injury-related histomorphology changes in the hypothalamus of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GnRH secretion through Nrf2/mGluR5/COX-2/PGE2 signaling pathway.


2021 ◽  
Vol 37 (5) ◽  
pp. 251-259
Author(s):  
Xia Wang ◽  
Xubo Shen ◽  
Lei Chen ◽  
Qin Yu ◽  
Shimin Xiong ◽  
...  

This study investigated hepatic oxidative damage in rats following long-term manganese (Mn) exposure and clarified the underlying mechanisms. Forty-eight rats (SPF, male) were randomly assigned to receive low (10 mg/kg, n = 16) or high doses of Mn (50 mg/kg, n = 16) or sterilized distilled water (control group, n = 16). Rats were euthanized after 12 months, and liver Mn levels and histopathological changes were determined. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver malondialdehyde (MDA), glutathione peroxidase (GSH-PX), nuclear factor E2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinine oxidoreductase-1 (NQO1) levels were also determined. The Mn concentration and relative liver weights were significantly higher in the high-dose Mn group than in the control and low-dose Mn exposure groups. Low-dose Mn exposure resulted in mild expansion of hepatic sinuses and intact nuclei, whereas high-dose exposure led to pathological alterations in hepatocytes. High-dose Mn treatment significantly increased AST, ALT, and MDA activities and decreased GSH-PX activity. Additionally, liver Nrf2, HO-1, and NQO1 protein expression were markedly reduced by Mn exposure. Under the study conditions, long-term low-dose Mn exposure resulted in slight pathological changes in liver structure, but high-dose Mn exposure affected both liver structure and function, which might be related to the inhibition of Nrf2 expression, suppression of the transcription of its underlying antioxidant genes, and down regulation of the corresponding proteins. Consequently, the antioxidant capacity in the rat liver was weakened.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Wenpeng Cui ◽  
Yang Bai ◽  
Ping Luo ◽  
Lining Miao ◽  
Lu Cai

So far, cardiovascular and renal diseases have brought us not only huge economic burden but also serious society problems. Since effective therapeutic strategies are still limited, to find new methods for the prevention or therapy of these diseases is important. Oxidative stress has been found to play a critical role in the initiation and progression of cardiovascular and renal diseases. In addition, activation of nuclear-factor-E2-related-factor-2- (Nrf2-) antioxidant-responsive element (ARE) signaling pathway protects cells and tissues from oxidative damage. As a proteasomal inhibitor, MG132 was reported to activate Nrf2 expression and function, which was accompanied with significant preventive and/or therapeutic effect on cardiovascular and renal diseases under most conditions; therefore, MG132 seems to be a potentially effective drug to be used in the prevention of oxidative damage. In this paper, we will summarize the information available regarding the effect of MG132 on oxidative stress-induced cardiovascular and renal damage, especially through Nrf2-ARE signaling pathway.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1144
Author(s):  
Yongwei Zhao ◽  
Yu Niu ◽  
Jintian He ◽  
Lili Zhang ◽  
Chao Wang ◽  
...  

The object of present study was to evaluate the effects of dihydroartemisinin (DHA) supplementation on the hepatic antioxidant capacity in IUGR-affected weaned piglets. Eight piglets with normal birth weight (NBW) and sixteen IUGR-affected piglets were selected. Piglets were weaned at 21 days. NBW and IUGR groups were fed a basal diet and the ID group was fed the basal diet supplemented with 80 mg/kg DHA for 28 days. The result indicated that compared with NBW piglets, IUGR-affected piglets increased (p < 0.05) the concentration of malondialdehyde (MDA) and decreased (p < 0.05) the serum activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). In addition, IUGR-affected piglets showed increased (p < 0.05) hepatic concentrations of protein carbonyl (PC), 8-hydroxy-2’-deoxyguanosine (8-OHdG), and oxidized glutathione (GSSG), and an increased GSSG:GSH value. IUGR-affected piglets exhibited lower (p < 0.05) activities of GSH-Px, T-SOD, total antioxidant capacity (T-AOC), and the concentration of glutathione (GSH). DHA supplementation decreased (p < 0.05) the serum concentration of MDA and increased the serum activities of T-AOC, T-SOD, GSH-Px, and CAT. The ID group showed decreased (p < 0.05) concentrations of MDA, PC, 8-OHdG, and GSSG, and a decreased GSSG:GSH value in the liver. The hepatic activity of T-SOD and the concentration of GSH were increased (p < 0.05) in the liver of ID group. IUGR-affected piglets downregulated (p < 0.05) mRNA expression of nuclear erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and CAT. DHA supplementation increased (p < 0.05) mRNA expression of Nrf2, HO-1, GPx1, and CAT in the ID group. In addition, the protein expression of Nrf2 was downregulated (p < 0.05) in the liver of IUGR-affected piglets and DHA supplementation increased (p < 0.05) the protein content of Nrf2 and HO-1. In conclusion, DHA may be beneficial in alleviating oxidative damage induced by IUGR through the Nrf2/ARE signaling pathway in the liver.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xumin Li ◽  
Xiaoyu Sun ◽  
Xiaorong Zhang ◽  
Yixin Mao ◽  
Yinghui Ji ◽  
...  

Diabetes mellitus is a well-recognized risk factor for periodontitis. The goal of the present study was to elucidate whether oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2) participate in the aggravation of periodontitis by diabetes. For this purpose, we assigned Wistar rats to control, periodontitis, diabetes, and diabetic periodontitis groups. Two weeks after induction of diabetes by streptozotocin, periodontitis was induced by ligation. Two weeks later, periodontal tissues and blood were harvested and analyzed by stereomicroscopy, immunohistochemistry, and real-time polymerase chain reaction. We found that ligation induced more severe bone loss and periodontal cell apoptosis in diabetic rats than in normal rats (p<0.05). Compared with the control group, periodontitis significantly enhanced local oxidative damage (elevated expression of 3-nitrotyrosine, 4-hydroxy-2-nonenal, and 8-hydroxy-deoxyguanosine), whereas diabetes significantly increased systemic oxidative damage and suppressed antioxidant capacity (increased malondialdehyde expression and decreased superoxide dismutase activity) (p<0.05). Simultaneous periodontitis and diabetes synergistically aggravated both local and systemic oxidative damage (p<0.05); this finding was strongly correlated with the more severe periodontal destruction in diabetic periodontitis. Furthermore, gene and protein expression of Nrf2 was significantly downregulated in diabetic periodontitis (p<0.05). Multiple regression analysis indicated that the reduced Nrf2 expression was strongly correlated with the aggravated periodontal destruction and oxidative damage in diabetic periodontitis. We conclude that enhanced local and systemic oxidative damage and Nrf2 downregulation contribute to the development and progression of diabetic periodontitis.


Sign in / Sign up

Export Citation Format

Share Document