scholarly journals ANTIBACTERIAL ACTIVITY OF FOMITOPSIS BETULINA CULTURAL LIQUID

2019 ◽  
Vol 6 ◽  
pp. 10-16 ◽  
Author(s):  
Tetiana Krupodorova ◽  
Victor Barshteyn ◽  
Elena Pokas

The antibacterial activity of Fomitopsis betulina cultural liquid (native, native concentrated, lyophilized, dried) against standard bacteria (Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Staphylococcus aureus АТСС 25923), and clinical isolates (Acinetobacter baumannii 50/1496 MBL, A. baumannii 88/2995 MBL, E. coli 116/3196 KPC, Klebsiella pneumoniae 6/509 ESBL, AmpC, KPC, P. aeruginosa 99/3066 MBL, P. aeruginosa 125/3343 MBL, S. haemoliticus 22/824 MRSA, S. aureus 134/3569 MRCNS) has been evaluated by the serial dilutions method. The antibacterial activity of F. betulina against S. haemoliticus and A. baumannii has been found for the first time. All samples of F. betulina cultural liquid demonstrated the inhibitory effect against standard bacterial strains at the minimum bactericidal concentration (MBC) ranging from >2.0 up to 18.75 mg/ml, and against multidrug-resistant clinical isolates with MBC from 7.8 up to 48.42 mg/ml. The dried F. betulina cultural liquid showed the highest antimicrobial activity against standard bacteria and clinical isolates, except A. baumannii 50/1496 MBL, while native concentrated cultural liquid was the most effective against this pathogen. The study showed that the antibacterial activity of the cultural liquid of F. betulina was improved by concentration and drying. The results obtained indicate that F. betulina cultural liquid contains alternative antimicrobial agents, useful for the treatment of bacterial diseases and might be a perspective substance for the pharmaceutical industries

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Shekooh Behroozian ◽  
Sarah L. Svensson ◽  
Julian Davies

ABSTRACT The ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. IMPORTANCE More than 50 years of misuse and overuse of antibiotics has led to a plague of antibiotic resistance that threatens to reduce the efficacy of antimicrobial agents available for the treatment of infections due to resistant organisms. The main threat is nosocomial infections in which certain pathogens, notably the ESKAPE organisms, are essentially untreatable and contribute to increasing mortality and morbidity in surgical wards. The pipeline of novel antimicrobials in the pharmaceutical industry is essentially empty. Thus, there is a great need to seek for new sources for the treatment of recalcitrant infectious diseases. We describe experiments that demonstrate the efficacy of a “natural” medicine, Kisameet clay, against all of the ESKAPE strains. We suggest that this material is worthy of clinical investigation for the treatment of infections due to multidrug-resistant organisms.


Author(s):  
Bindhu R. Kamath ◽  
Sabeena Kizhedath

Background: Cassia fistula Linn is a plant which is widely grown in India and is used for medicinal purposes. The study was carried out with an objective to demonstrate the antimicrobial activity of leaves of Cassia fistula Linn. The aim of the study is to assess antibacterial and antifungal activity of methanolic leaf extract of Cassia fistula Linn against selected clinical isolates.Methods: The antimicrobial activity of methanolic extract of Cassia fistula was evaluated using agar well diffusion method and to zone of inhibition of extract was determined. Clinical isolates of Staphyloccocus aureus, MRSA, Pseudomonas aeruginosa, E. coli and Proteus were screened.Results: The methanolic extracts exhibited antibacterial activity against Staphylococcus aureus. The extract was not active against E. coli, Proteus, MRSA, Pseudomonas aeruginosa. The extract also failed to demonstrate antifungal activity against Candida albicans and Aspergillus niger.Conclusions: The global emergence of multidrug resistant bacterial strains is increasing, limiting the effectiveness of current drugs and treatment failure of infections. A novel approach to the prevention of antibiotic resistance of pathogenic species is the use of new compounds that are not based on existing synthetic antimicrobial agents.


Author(s):  
A.P. Cardiliya ◽  
A. Selvaraj ◽  
M.J. Nanjan ◽  
M.J.N. Chandrasekar

: The existence of multidrug–resistant (MDR) E .coli (superbugs) is a global health issue confronting humans, livestock, food processing units, and pharmaceutical industries. The quorum sensing (QS) controlling ability of the E .coli to form biofilms has become one of the important reasons for the emergence of multidrug-resistant pathogens. Quorum signaling activation and formation of biofilm lead to the emergence of antimicrobial resistance of the pathogens increasing the therapy difficulty for treating bacterial diseases. There is a crucial need, therefore, to reinforce newer therapeutic designs to overcome this resistance. As the infections caused by E .coli are attributed via the QS-regulated biofilm formation, easing this system by QS inhibitors is a possible strategy for treating bacterial diseases. Plant based natural products have been reported to bind to QS receptors and interrupt the QS systems of pathogens by inhibiting biofilm formation and disrupting the formed biofilms, thus minimizing the chances to develop a resistance mechanism. The present report reviews critically the QS capability of E .coli to form biofilms leading to multidrug resistant pathogens and the investigations that have been carried out so far on plant acquired natural products as QS inhibitors.


Author(s):  
Sergey S. Patrushev ◽  
Lyubov G. Burova ◽  
Anna A. Shtro ◽  
Tatyana V. Rybalova ◽  
Dmitry S. Baev ◽  
...  

Background: Natural sesquiterpene lactones are an important class of heterocyclic compounds in drug discovery since they are possessed a wide range of biological properties including antibacterial activity. Objective: The objective of this study was to synthesize of isoalantolactone derivatives with a furo[2,3-d]pyrimidin-2-оne moiety and to evaluate their antibacterial and antiviral activity. Methods: The Sonogashira cross-coupling and subsequent Ag-catalyzed cyclization reactions were the main routes of synthesis. The antibacterial activity and the ability to inhibit biofilms formation on E. coli, S. aureus, A. viscosus, P. aeruginosa and E. faecalis bacterial strains were evaluated. A study of the molecular interactions of new compounds with the multiple virulence factor regulators was performed using docking simulations. The antiviral activity against influenza A virus and human orthopneumovirus H-2А was also studied. Results: The in vitro antibacterial activity for 4 (MIC = 58.33±4.41 μg/mL) concerning E. coli and 5 (MIC = 96.5±3.25 μg/mL) against A. viscosus and the inhibition of biofilm formation for compounds 2, 4, and 5 on E. coli, S. aureus, P. aeruginosa and E. faecalis bacterial strains has been of interest for the search of improved antimicrobial agents. Compound 3 was endowed with antiviral activity to human orthopneumovirus H-2А with SI >33. The activity of the new type of hybrid compounds is depended on the substituent in the 6th position of furo[2,3-d]pyrimidin-2-one fragment. Conclusion: The decoration of isoalantolactone with a furo[2,3-d]pyrimidin-2-one fragment led to perspective antiviral and antimicrobial agents. Due to antimicrobial activity, pyridine-4-yl substituted isoalantolactone-furopyrimidinone hybrid is considered as a candidate compound to participate in further research.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5035
Author(s):  
Sandra Patricia Rivera-Sánchez ◽  
Helen Astrid Agudelo-Góngora ◽  
José Oñate-Garzón ◽  
Liliana Janeth Flórez-Elvira ◽  
Adriana Correa ◽  
...  

Antimicrobial resistance reduces the efficacy of antibiotics. Infections caused by multidrug-resistant (MDR), Gram-negative bacterial strains, such as Klebsiella pneumoniae (MDRKp) and Pseudomonas aeruginosa (MDRPa), are a serious threat to global health. However, cationic antimicrobial peptides (CAMPs) are promising as an alternative therapeutic strategy against MDR strains. In this study, the inhibitory activity of a cationic peptide, derived from cecropin D-like (ΔM2), against MDRKp and MDRPa clinical isolates, and its interaction with membrane models and bacterial genomic DNA were evaluated. In vitro antibacterial activity was determined using the broth microdilution test, whereas interactions with lipids and DNA were studied by differential scanning calorimetry and electronic absorption, respectively. A strong bactericidal effect of ΔM2 against MDR strains, with minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) between 4 and 16 μg/mL, was observed. The peptide had a pronounced effect on the thermotropic behavior of the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane models that mimic bacterial membranes. Finally, the interaction between the peptide and genomic DNA (gDNA) showed a hyperchromic effect, which indicates that ΔM2 can denature bacterial DNA strands via the grooves.


2020 ◽  
Vol 11 ◽  
pp. 1119-1125
Author(s):  
Mohammad Jaber ◽  
Asim Mushtaq ◽  
Kebiao Zhang ◽  
Jindan Wu ◽  
Dandan Luo ◽  
...  

The control over contagious diseases caused by pathogenic organisms has become a serious health issue. The extensive usage of antibiotics has led to the development of multidrug-resistant bacterial strains. In this regard, metal-oxide-based antibacterial nanomaterials have received potential research interest due to the efficient prevention of microorganism growth. In this study, splat-shaped Ag–TiO2 nanocomposites (NCs) were synthesized on the gram scale and the enhanced antibacterial properties of TiO2 in the presence of silver were examined. The formation of Ag–TiO2 NCs was analyzed through various characterization techniques. The cell viability experimental results demonstrated that the Ag–TiO2 NCs have good biocompatibility. The antibacterial activity of the prepared Ag–TiO2 NCs was tested against the Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacterial strains. The Ag–TiO2 NCs exhibited promising and superior antibacterial properties compared to TiO2 nanospheres as confirmed by the bacterial growth and inhibition zone. The improvement in the antibacterial activity was attributed to the synergistic effect of the hybrid nature of TiO2 nanoparticles in the presence of Ag.


Author(s):  
Asmathunisha N

Abstract: Nanoparticles plays a vital role in the field of antimicrobial agents against pathogenic microorganisms. Screening of nanoparticles for antimicrobial activities is a time consuming and cumbersome process. Recently, a simple technique of using the dye resazurin has been used as an indicator of bacterial growth for testing antimicrobial activity on microtitre plate. However, this technique does not quantify the microbial load. Therefore, the present work was attempted to find a new antibacterial method employing the dye resazurin assay and haemocytometric counting of microbes for testing silver nanoparticles synthesised from Xylocarpus mekongensis .The bacterial strains E. coli, S. aureus and P. aeruginosa (multi-drug resistant strain) were used to evaluate the screening of mangrove extracts. Minimum inhibition concentration (MIC) was also calculated for the silver nanoparticles using ciproflaxcin as reference antibiotic. The antibacterial activity Xylocarpus mekongensis was carried out against all the three bacteria by the same method and the values were compared with reference antibiotic. The present study has suggested a rapid, dependable, easy and inexpensive method, suitable for testing the antibacterial activity of silver nanoparticles which are promising to develop as new antibacterials. Keywords: Mangroves, Silver, Nanoparticles, Resazurin, Antibacterials


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Aseer Manilal ◽  
Kuzhunellil Raghavanpillai Sabu ◽  
Melat Woldemariam ◽  
Addis Aklilu ◽  
Gelila Biresaw ◽  
...  

Background. In developing countries, the prevalence of bacterial infections is quite rampant due to several factors such as the HIV/AIDS pandemic, lack of hygiene, overcrowding, and resistance to conventional antimicrobials. Hence the use of plant-based antimicrobial agents could provide a low-cost alternative therapy. Rosmarinus officinalis is reputed as a medicinal plant in Ethiopia; however, its antibacterial activity against many of the clinical isolates remains overlooked. Methods. Tender foliage of R. officinalis was collected and extracted in ethanol (EtOH) and evaluated for their antimicrobial activity against ten multidrug-resistant (MDR) clinical isolates, human type culture pathogens, and meat-borne bacterial isolates by employing agar well diffusion assay. Results. EtOH extract of R. officinalis efficiently subdued the growth of all tested MDR clinical isolates in varying degrees. Salmonella sp. and Staphylococcus aureus were found to be the most sensitive clinical isolates. Likewise, it efficiently repressed the growth of meat-borne pathogens, particularly, S. aureus and Salmonella sp. showing its potentiality to be used as a natural antibacterial agent in the meat processing industry. The mechanism of antibiosis of plant extract against meat-borne pathogens is inferred to be bactericidal. Chemical constituents of the crude plant extract were analysed by Gas Chromatography-Mass Spectroscopy (GC-MS), Fourier Transform Infrared (FT-IR), and UV-visible spectroscopy showing genkwanin (26%), camphor (13%), endo-borneol (13%), alpha-terpineol (12%), and hydroxyhydrocaffeic acid (13%) as the major compounds. Conclusion. Overall results of the present study conclude that R. officinalis could be an excellent source of antimicrobial agents for the management of drug-resistant bacteria as well as meat-borne pathogens.


Author(s):  
Dr. Vibha Bhardwaj

The antibacterial effect of Prosopis cineraria leaves was evaluated on multidrug resistant (MDR) strains of Bacillus subtilis (ATCC 6633), E. coli (ATCC 8739), Salmonella enterica (ATCC 14028), Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 27853). Powdered leaves of the tree were treated with methanol for the extraction. Crude methanol extracts of the leaves of P. cineraria was investigated for their antibacterial activity against a wide range of bacteria (both gram-positive and gram-negative) by agar well diffusion method. Ciprofloxacin was used as standard. The methanolic leaves extracts of P. cineraria showed a remarkable inhibition of the microorganisms. The potency shown by these extracts recommends their use against multidrug resistant microorganisms. The present study suggests that the methanol extract of the leaves of P. cineraria exhibited a potential antibacterial activity against the tested microorganisms and could be a potential source of new antimicrobial agents.


2018 ◽  
Vol 18 (9) ◽  
pp. 787-796 ◽  
Author(s):  
Fawzi Mahomoodally ◽  
Simla Ramcharun ◽  
Gokhan Zengin

Introduction: Onion (Allium cepa L.) and garlic (Allium sativum L.) extracts are traditionally used in many cultures as antimicrobial agents. Nonetheless, there is still a dearth of scientific validation pertaining to the antibacterial and possible antibiotic potentiating activity of these plants. Methods: Decoction as traditionally used and methanol, ethanol, ethyl acetate, and acetone extracts of onion and garlic were evaluated for their antibacterial activity against 15 bacterial strains (6 ATCC strains and 9 clinical isolates) using the broth microdilution method to establish the minimum inhibitory concentration. The bacteriostatic and bactericidal actions were determined as compared to conventional antibiotics (streptomycin and chloramphenicol). Fractional Inhibitory Concentration (FIC) was determined to establish any synergistic interaction between the extracts and antibiotics using a modified checkerboard assay. Results: The ethyl acetate extract of garlic showed bactericidal effect against 1 ATCC (E. coli) and 2 clinical isolates. Streptomycin produced only indifferent effect (FIC 1< and ≤ 4) when combined with ethyl acetate extract of onion. Chloramphenicol showed synergism with ethyl acetate extract of onion against ATCC S. aureus (FIC 0.27-0.30) and Micrococci species (FIC 0.27-0.32). Streptomycin showed mostly antagonism whereas chloramphenicol showed synergism effects with the ethyl acetate extract of garlic. The observed antibacterial activity might be justified due to the presence of high concentration of phenolic compounds in the extracts. Conclusion: This study has provided an opportunity to establish valuable baseline information on the antibiotic potentiating activity of onion and garlic which can be further exploited for the treatment and/or management of infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document