scholarly journals Analyzing the Effect of Intensive and Low-Input Agrotechnical Support for the Physiological, Phenometric, and Yield Parameters of Different Maize Hybrids Using Multivariate Statistical Methods

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
A. Illes ◽  
C. Bojtor ◽  
A. Szeles ◽  
S. M. N. Mousavi ◽  
B. Toth ◽  
...  

Improving nitrogen efficiency is a crucial strategy for developing sustainable agricultural systems that leads to maximum yield in exchange for minimum inputs and nitrogen loss. Three maize hybrids (Zea mays L.) of different maturity classes and length of vegetation period (FAO 400, FAO 490, and FAO 380) were selected and for trials during the 2019 growing season. Three different nitrogen (N) fertilization treatments (0, 120, and 305 kg·N·ha−1) were applied in order to assess variability in yield-related components. The effect of hybrids, fertilizer, and the interaction of the examined hybrids in relation to fertilizer was significant on yield and oil and protein content. Correlation and biplot analysis show that increases in the lipid peroxidation (LP) amount in the plant leaf stages cause a decrease in the oil content of the harvested yield. The activity of ascorbate peroxidase (APX) and LP at the six-leaf stage directly affects the protein content. The amount of APX at the silking stage has a direct and significant effect on starch content. This study showed that the activity of APX at the silking stage has the highest value in all examined hybrids. APX and LP can be controlled with nitrogen fertilization under various environmental circumstances.


2020 ◽  
Vol 48 (4) ◽  
pp. 565-573
Author(s):  
Árpád Illés ◽  
S. M. Nasir Mousavi ◽  
Csaba Bojtor ◽  
Janos Nagy

AbstractIn recent years, producers of agricultural products have increased the use of chemical fertilizers per unit area. The goal of this research was to analyze the interaction of genotype in treatment (NPK fertilizer) on grain yield, protein content, oil content, and the starch content on 13 maize hybrids using analysis by the model of additive and multiplier effects AMMI and to evaluate genotypes, treatments, and their interactions using biplot in Hungary. Treatments include NPK0 (N: 0 kg/ha, P2O5:0 kg/ha, K2O: 0 kg/ha), NPK1 (N: 30 kg/ha, P2O5: 23 kg/ha, K2O: 27 kg/ha), NPK2 (N: 60 kg/ha, P2O5: 46 kg/ha, K2O: 54 kg/ha), NPK3 (N: 90 kg/ha, P2O5: 69 kg/ha, K2O: 81 kg/ha), NPK4 (N: 120 kg/ha, P2O5: 92 kg/ha, K2O: 108 kg/ha), NPK5 (N: 150 kg/ha, P2O5: 115 kg/ha, K2O: 135 kg/ha) in four replications based on complete randomized block design in 2019. The NPK fertilizer effects indicate that the fertilizers are different on yield genotype. AMMI analysis showed that there was a significant difference between genotypes, treatment, and the interaction effect of genotype * treatment at one percent. Besides, the maximum yield had Loupiac and NPK3 on grain yield, Loupiac and NPK2 on oil content, P0023, and NPK3 for starch content, DKC 3/ES4725 (DKC4725) and NPK3 for protein content. Also, GGE biplot analysis indicates that had maximum grain yield in Loupiac, protein content in P9978, oil content in MV Maronetta, and starch content in Sushi.



2012 ◽  
pp. 101-104
Author(s):  
Ágnes Krivián ◽  
Mihály Sárvári

The yielding capacity and quality parameters of 11 maize hybrids were studied in 2011 on calcareous chernozem soil in a 25-year long-term fertilization experiment in the control (without fertilization), in the base treatment of N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 and in five treatments which were the multiplied doses of the base treatment. The N fertilizer was applied in the autumn and in the spring, while P and K fertilizers were applied in the autumn.The sowing time was 17–18 April, the time of harvest was 8 October. The 30-year average of precipitation (April–Sept) was 345.1 mm, the amount of precipitation did not differ greatly from that, however, its distribution was very unfavourable.It was found that the largest yield increment (as compared to the control) was in the treatment N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 in the long-term experiment. The largest yields were obtained for the hybrids P9494, PR37N01 and PR35F38 (13.64–13.71 t ha-1). Due to the dry period at the end of the summer – beginning of autumn, the grain moisture content at harvest was favourably low, 12–18% depending on the treatment and the growing season. The N fertilization significantly increased the protein content of the kernel, but the starch content of the kernel decreased (significantly in several cases) with increasing fertilizer doses and yields as compared with the control.The highest protein content was measured in hybrids GK Boglár and Szegedi 386. The oil content was above 4% for GK Boglár, but the two hybrids were not among the best yielding hybrids in spite of their good inner content. The starch content was around 75 % without fertilization, it decreased with fertilization.For the tested hybrids, the fertilizer dose N 120 kg ha-1, P2O5 75 kg ha-1, K2O 90 kg ha-1 can be recommended with respect to efficacy and environmental considerations.



2009 ◽  
Vol 57 (4) ◽  
pp. 389-399 ◽  
Author(s):  
J. Nagy

The yield, protein and starch content of Martonvásár maize hybrids belonging to different FAO groups were examined in experiments involving early, optimal and late sowing dates in two different years (drought — 2007, favourable water supplies — 2008) on a calcareous chernozem soil with loam texture at the Látókép Experimental Station of the Centre of Agricultural Sciences and Engineering, University of Debrecen.Sowing date had a significant effect on maize grain yield in the dry year. The grain yields of hybrids with longer growing periods were significantly higher than those with shorter growing periods in both years, but they reacted sensitively to the change in sowing date in the dry year. Due to the rainfall distribution in the growing season, sowing date did not modify the performance of the hybrids in the year with favourable water supplies. Sowing date had a significant effect on the grain protein content in the dry year, with significantly higher values after late sowing than after early or optimal sowing. Averaged over the sowing dates, the protein content of the FAO 200 hybrid was significantly higher in both years than that of hybrids in other FAO groups. In the dry year, the greatest difference in protein content could be observed between the early and late sowing dates for hybrids in all four FAO groups. A negative correlation was found between yield and protein content. Sowing date significantly increased the starch content of maize in the favourable year, with a significant difference between early and late sowing dates.In the dry year higher starch contents were recorded for all the hybrids and for all the sowing dates than in the favourable year. In the dry year, sowing date only caused a significant difference in the starch content in the case of FAO 200 sown at optimal and late sowing dates. In the favourable year, a significant difference was only obtained for the starch content of the FAO 400 hybrid sown at early and late sowing dates. Satisfactory quality can only be achieved if suitable genotypes are grown with appropriate technologies.



2010 ◽  
pp. 126-131
Author(s):  
Voichita Has ◽  
Radu Groza ◽  
Ioan Has ◽  
Ana Copandean ◽  
Elena Nagy

An improvement in the quality of maize grain by increasing the level of components responsible for its biological value is possibleby using genetic means. However, a change in the genotype, together with improving the nutrient properties of the grain, also has someadverse consequences connected with a fall in yield and in resistance to diseases.Field experiments were conducted during three years (2003, 2004and 2005) to evaluate environmental effects on grain yield andquality responses of maize hybrids. Twenty one hybrids of various maturity groups (FAO 150-400) were planted to achieve an optimum(60-70 000 plants per hectare) plant populations and grown under the medium-N (80 kg N ha-1) fertilization. Environmental conditionssignificantly affected maize hybrid responses for grain yield, starch, oil and protein contents, and consequently, starch, oil and proteinyields per hectare. Hybrids of flint type, which have a short vegetation period, had high protein and oil content but the yield averageswere low due to the slower rate of starch incorporation. Hybrids of the dent type have a longer growing season and more intensecarbohydrate accumulation, but low protein and oil contents. In wet years there was a higher rate of starch accumulation, while dryyears are favorable for protein and oil accumulation. Positive correlation existed between starch content and grain yield and 1000-weight as well as between oil content and volumetric weight among tested hybrids. Negatively correlation existed between grain oil andstarch content as well as between oil content and grain yield and 1000-weight. Thus, end-users that require high quality maize may needto provide incentives to growers to off set the negative correlation of grain yield with oil and protein content.



2008 ◽  
pp. 111-117
Author(s):  
Nóra Takács ◽  
Györgyi Micskei ◽  
Zoltán Berzsenyi

The results of experiments carried out in the Agricultural Research Institute of the Hungarian Academy of Sciences clearly show that in the case of hybrids grown in a monoculture greater fertiliser responses can be achieved with increasing rates of N fertiliser than in crop rotations. In the monoculture experiment the parameters investigated reached their maximum values at a rate of 240 kg/ha N fertiliser, with the exception of 1000-kernel mass and starch content. In both cases the starch content was highest in the untreated control, gradually declining as the N rates increased. Among the parameters recorded in the crop rotation, the values of the dry grain yield, the 1000-kernel mass, the protein yield and the starch yield were greatest at the 160 kg/ha N fertiliser rate, exhibiting a decrease at 240 kg/ha. Maximum values for the protein content and SPAD index were recorded at the highest N rate. It is important to note, however, that although the N treatments caused significant differences compared to the untreated control, the differences between the N treatments were not significant.In the given experimental year the values achieved for the untreated control in the crop rotation could only be achieved in the monoculture experiment at a fertiliser rate of 160 kg/ha N, indicating that N fertiliser rates could be reduced using a satisfactory crop sequence, which could be beneficial from the point of view of environmental pollution, crop protection and cost reduction.The weather in 2006 was favourable for maize production, allowing comparative analysis to be made of the genetically determined traits of the hybrids. Among the three hybrids grown in the monoculture experiment, Maraton produced the best yield, giving maximum values of the parameters tested at a fertiliser rate of 240 kg/ha N. The poorest results were recorded for Mv 277, which could be attributed to the fact that the hybrid belongs to the FAO 200 maturity group, while the other hybrids had higher FAO numbers. Maraton also gave the highest yields in the crop rotation experiment at the 160 kg/ha N level. All three hybrids were found to make excellent use of the natural nutrient content of the soil.It was proved that the protein content of maize hybrids can only be slightly improved by N fertilisation, as this trait is genetically coded, while the starch content depends to the greatest extent on the ecological factors experienced during the growing season.



2018 ◽  
pp. 35-39
Author(s):  
G. Ya. Krivosheev ◽  
A. S. Ignatiev

The studies were carried out in 2015–2017 at the FSBSI “Agricultural Research Center “Donskoy” in order to determine the opti­mal values of quantitative traits, the combination of which allows forming the maximum yield for hybrids of grain use in arid conditions. The 96 maize hybrids were the initial material which were studied for grain productivity, plant height, height of ear attachment, length of the vegetation period and of the period from germination to ear flowering. The presence, strength and direction of correlation between grain productivity and quantitative characteristics have been established. There has been identified a weak positive correlation between the grain productivity and plant height (r = + 0.10…+0.23). Maize hybrids for grain use should be of medium height with an optimal value of the trait of 220–250 cm. The grain productivity had an average in 2016 (r = + 0.49) and a weak in 2015 and 2016 (r = + 0.05; r = +0.17) dependence on an ear attachment height. The optimal values of the trait were 80–95 cm. The nature of the dependence between grain productivity and the length of the vegetation period greatly differed through the year of study. In 2016 an average positive correlation was r = + 0.52; in 2015 and 2017 there was a weak negative correlation r = –0.14, r = –0.24. Through different years, the hybrids of various groups of ripeness formed the maximum grain productivity of 5.0–5.5 t/ha. The hybrids of the middle-early group of ripening, as well as the early-ripening and middle-ripening hybrids had an advantage before the middle-early group slightly differing in the length of the vegetation period. The optimum length of the vegetation period is 97–110 days, the period from germination to ear flowering is 53–61 days.



1976 ◽  
Vol 86 (1) ◽  
pp. 155-161 ◽  
Author(s):  
A. Hadjichristodoulou

SUMMARYThe effect of stage of harvesting on dry-matter (D.M.) yield and chemical composition of barley, wheat and the legumes common vetch (F. sativa), woollypod vetch (F. dasycarpa) and fodder peas (P. sativum) were studied in Cyprus under low rainfall conditions in a series of trials sown in four successive years. Cereals were harvested at the beginning of heading, 50% heading and the milk stage of grain, and legumes at three stages from preflowering to full pod formation, D.M., protein and digestible D.M. yields and percentage D.M. content increased with age, whereas percentage protein content and D.M. digestibility declined. Under moisture stress conditions before and during the harvesting period D.M. yields did not increase significantly with age. Protein content of cereals under low rainfall conditions was higher than that of cereals grown in the U.K. under higher N fertilization levels. Rainfall conditions affected drastically the performance of both cereals and legumes. However, average yields were satisfactory; the barley variety 628 gave 8·98 t/ha, the highest D.M. yield among all cereal and legume varieties.



Author(s):  
C. Naidin

In this paper, we analyze the influence of N and P fertilization on wheat yields, taking into account the previous crop and the level of rainfall accumulated until the end of the growth stages in plant development. In the wheat crops developed on the reddish-brown low luvi soil found at ARDS Simnic, the N fertilization has favorable effects in moderate doses (60 - 100 kg N/ha after corn and 60 - 90 kg N/ha after peas), while in higher doses (120 - 160 kg N/ha) fertilization determines a fall in production, both in the case of rainfall deficit and excess. The P has favorable effects on wheat crops, especially when the previous crop is peas. The rainfall quantity, as well as its repartition along the vegetation period, influences the wheat crop, causing great variations from year to year. The obtained data shows that rainfall deficit as well as rainfall excess determines a drop in wheat production; relatively high and stable average productions can be obtained in the case of rainfall levels close to the multi annual averages in different plant development stages.



2005 ◽  
Vol 54 (3-4) ◽  
pp. 309-324 ◽  
Author(s):  
László Márton

The effect of natural rainfall and N, P and K nutrients on the yield of maize was investigated in 16 years of a long-term fertilization experiment set up at the Experimental Station of the Institute in Nagyhörcsök. The soil was a calcareous chernozem, having the following characteristics: pH (KCl): 7.3, CaCO 3 : 5%, humus: 3%, clay: 20-22%, AL-soluble P 2 O 5 : 60-80, AL-soluble K 2 O: 180-200, KCl-soluble Mg: 150-180; KCl+ EDTA-soluble Mn, Cu and Zn content: 80-150, 2-3 and 1-2 mg·kg -1 . The experiment had a split-split-plot design with 20 treatments in 4 replications, giving a total of 80 plots. The treatments involved three levels each of N and P and two levels of K in all possible combinations (3×3×2=18), together with an untreated control and one treatment with a higher rate of NPK, not included in the factorial system. The main results can be summarized as follows: An analysis of the weather in the 16 experimental years revealed that there were no average years, as two years were moderately dry (1981, 1982), eight were very dry (1973, 1978, 1986, 1989, 1990, 1993, 1997, 2002) and six were very wet (1969, 1974, 1977, 1994, 1998, 2001). In dry years the N, NP and NK treatments led to a yield increment of over 3.0  t·ha -1 (3.2 t·ha -1 ) (81%) compared with the unfertilized control, while the full NPK treatment caused hardly any increase in the maize yield (7.2 t·ha -1 ). In the case of drought there was a 4.0% yield loss in the N, NP and NK treatments compared to the same treatments in the dry years. This loss was only 1.0% in the NPK treatment. In very wet years the positive effects of a favourable water supply could be seen even in the N, NP and NK treatments (with yields of around 7.4 t·ha -1 ). The yield increment in these treatments compared with the droughty years averaged 8%, while balanced NPK fertilization led to a further 2% increase (10%). Significant quadratic correlations were found between the rainfall quantity during the vegetation period and the yield, depending on the nutrient supplies (Ø: R = 0.7787***, N: R = 0.8997***, NP: R = 0.9338***, NK: R = 0.9574***, NPK: R = 0.8906***). The optimum rainfall quantity and the corresponding grain yield ranged from 328-349 mm and 5.0-7.7 t·ha -1 , respectively, depending on the fertilizer rate. The grain yield increment obtained per mm rainfall in the case of optimum rainfall supplies was found to be 14.3-23.2 kg·ha -1 , while the quantity of rainfall utilized during the vegetation period for the production of 1 kg air-dry matter in the case of maximum yield amounted to 698, 449, 480, 466 and 431 litres in the control, N, NP, NK and NPK treatments, respectively. It was clear from the 43-year meteorological database for the experimental station (1961-2003) that over the last 23 years (1981-2003) the weather has become substantially drier. Compared with the data for the previous 20 years (1961-1980) there was an increase of 20, 500 and 50% in the number of average, dry and droughty years, no change in the number of wet years and a 71% drop in the number of very wet years.



Author(s):  
Florin IMBREA ◽  
Branko MARINCOVIC ◽  
Valeriu TABĂRĂ ◽  
PAUL PÎRŞAN ◽  
Gheorghe DAVID ◽  
...  

Experimenting new technology of cultivating maize is an important step forward in order to optimise the yielding capacity if a crop that ranks second among crops cultivated worldwide and first among crops cultivated in Romania. Using low frequency radiations to stimulate yield and quality in maize allows increases in yield between 10 and 15% compared to the classical cultivation method and an improvement of the quality indicators (protein content increased with 6-11% determining an increase of the protein yield per ha; starch content increased with 7-14%, which also determined an increase of the starch yield per ha; while fat content, another indicator we monitored, increased with 2-6%).



Sign in / Sign up

Export Citation Format

Share Document