scholarly journals Osteosarcoma Cell-Derived Exosomal miR-1307 Promotes Tumorgenesis via Targeting AGAP1

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fei Han ◽  
Peidong Pu ◽  
Chao Wang ◽  
Xiao Ding ◽  
Zhoujun Zhu ◽  
...  

The occurrence of osteosarcoma (OS) is associated with abnormal expression of many microRNAs (miRNAs). Exosomal miRNAs get much more attentions in intracellular communications. miR-1307 has been studied in many cancers, but its effects in OS have not been studied. We hypothesized that OS-derived exosomal miR-1307 regulates OS tumorigenesis. First, we found OS cell-derived exosomes (Exos) significantly promoted the proliferation, migration, and invasion of OS cells. Secondly, we found miR-1307 was highly expressed in OS cell-derived exosomes (OS-Exos), human OS tissues, and OS cell lines. Then, OS-Exos were extracted after OS cells were cultured and transfected with miR-1307 inhibitor, and the level of miR-1307 in OS-Exos was significantly reduced. When the level of miR-1307 in OS-Exos was significantly reduced, the effects of OS-Exos on migration, invasion, and proliferation of OS cells were also significantly weakened. Furthermore, using TargetScan, miRDB, and mirDIP databases, we identified that AGAP1 was a target gene of miR-1307. Overexpression of miR-1307 could inhibit the expression of AGAP1 gene. We also found AGAP1 was lower expressed in human OS tissues and OS cell lines. Luciferase gene indicated that miR-1307 directly bound the 3’-UTR of AGAP1. miR-1307 was negatively correlated with AGAP1 in clinical study. miR-1307 could significantly promote the proliferation, migration, and invasion of OS cells. In addition, upregulation of AGAP1 could significantly inhibit the role of miR-1307 in OS. In conclusion, our study suggests that OS cell-derived exosomal miR-1307 promotes the proliferation, migration, and invasion of OS cells via targeting AGAP1, and miR-1307-AGAP1 axis may play an important role in the future treatment of OS.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biyong Deng ◽  
Runsang Pan ◽  
Xin Ou ◽  
Taizhe Wang ◽  
Weiguo Wang ◽  
...  

Purpose. Osteosarcoma (Os) is the most frequent malignant tumor of the bone in the pediatric age group, and accumulating evidences show that lncRNAs play a key role in the development of Os. Thus, we investigated the role of RBM5-AS1 and its molecular mechanism. Methods. The expression of RBM5-AS1 in Os tissues and cell lines was detected by real-time polymerase chain reaction (QPCR). The effect of RBM5-AS1 on the proliferation of Os cells was detected using CCK8 assays and flow cytometry. The effect of RBM5-AS1 on the migration and invasion of Os cells was detected by transwell assays. And we performed QPCR and western blotting assays to investigate the relationship between RBM5-AS1 and RBM5. Finally, western blotting assays were performed to explore the mechanism of RBM5. Results. LncRNA RBM5-AS1 was overexpressed in the Os tissues and cell lines. And lncRNA RBM5-AS1 promoted Os cell proliferation, migration, and invasion in vitro and tumor growth in vivo. LncRNA RBM5-AS1 targets RBM5 in Os cells. Conclusion. To sum up, the results showed that lncRNA RBM5-AS1 promotes cell proliferation, migration, and invasion in Os.


2016 ◽  
Vol 15 (6) ◽  
pp. NP105-NP112 ◽  
Author(s):  
Fei Wang ◽  
Dapeng Yu ◽  
Zhen Liu ◽  
Ruijie Wang ◽  
Yan Xu ◽  
...  

MicroRNAs are highly conserved noncoding RNA that negatively modulate protein expression at a posttranscriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. To date, the potential microRNAs regulating the growth and progression of osteosarcoma are not fully identified yet. Previous reports have shown differentially expressed miR-125b in osteosarcoma. However, the role of miR-125b in human osteosarcoma has not been totally illuminated. In this study, we have shown that miR-125b was downregulated in human osteosarcoma tissues compared to the adjacent tissues and effects as a tumor suppressor in vitro. We found that stable overexpression of miR-125b in osteosarcoma cell lines U2OS and MG-63 inhibited cell proliferation, migration, and invasion. Our data also verified that Bcl-2 is the target of miR-125b. Meanwhile, we showed that Bcl-2 was inversely correlated with miR-125b in osteosarcoma tissues. More importantly, we proved that miR-125b increased the chemosensitivity of osteosarcoma cell lines to cisplatin by targeting Bcl-2. In conclusion, our data demonstrate that miR-125b is a tumor suppressor and support its potential application for the treatment of osteosarcoma in the future.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lili Zhang ◽  
Huixiao Chen ◽  
Fengxi He ◽  
Shiqian Zhang ◽  
Aihua Li ◽  
...  

MicroRNAs (miRNAs) play important roles in tumorigenesis by controlling target gene expression. With opposing roles as a tumor suppressor or oncogene, microRNA-320a (miR-320a) was found to participate in tumor genesis and progression and also identified as a potentially useful marker in cancer diagnosis, treatment, and prognosis. To better understand the role of miR-320a in ovarian cancer, we investigated miR-320a expression in epithelial ovarian cancer (EOC) specimens as well as EOC cell lines and analyzed correlations between miR-320a expression and processes associated with EOC progression. The miR-320a level in EOC specimens was found to be associated with ovarian cancer progression and infiltration. Through in vitro and in vivo studies, we found that miR-320a significantly promoted the proliferation, migration, and invasion of EOC cells, and we identified RASSF8 as a target gene of miR-320a that was downregulated in EOC tissues and cell lines. In vitro downregulation of RASSF8 promoted the growth, migration, and invasion of EOC cells. Together these findings indicate that RASSF8 is a direct target of miR-320a, through which miR-320a promotes the progression of EOC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


Author(s):  
Xinping Chen ◽  
Weihua Xu ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Junjie Hu ◽  
...  

Background: Increasing circular RNAs (circRNAs) are reported to participate in cancer progression. Nonetheless, the role of circRNAs in nasopharyngeal carcinoma (NPC) has not been fully clarified. This work is aimed to probe the role of circ_0000215 in NPC.Methods: Circ_0000215 expression in NPC tissues and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) assay, scratch healing assay and Transwell experiment were executed to investigate the regulatory function of circ_0000215 on the proliferation, migration and invasion of NPC cells. RNA immunoprecipitation (RIP), pull-down and dual-luciferase reporter experiments were utilized to determine the binding relationship between circ_0000215 and miR-512-5p, and between miR-512-5p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) 3′UTR. The effects of circ_0000215 on NPC growth and metastasis in vivo were examined with nude mice model. Western blot was applied to detect the regulatory effects of circ_0000215 and miR-512-5p on PIK3R1 expression.Results: Circ_0000215 was overexpressed in NPC tissues and cell lines. The functional experiments confirmed that knockdown of circ_0000215 impeded the growth and metastasis of NPC cells in vitro and in vivo. Additionally, circ_0000215 could also work as a molecular sponge to repress miR-512-5p expression. PIK3R1 was validated as a target gene of miR-512-5p, and circ_0000215 could increase the expression level of PIK3R1 in NPC cells via suppressing miR-512-5p.Conclusion: Circ_0000215 is overexpressed in NPC and exerts oncogenic effects in NPC through regulating miR-512-5p/PIK3R1 axis.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Haiyang Yu ◽  
Hang Song ◽  
Li Liu ◽  
Shuo Hu ◽  
Yuxin Liao ◽  
...  

Abstract Osteosarcoma (OS) is recognized as a common malignant tumor with a high trend of metastasis and diffusion. Despite the progresses that have been made in surgery, chemotherapy, and radiotherapy in the recent decades, the prognosis of patients with OS still remains poor. MiRNAs are being increasingly considered as new therapeutic targets for OS treatment. Our research aims to investigate the regulatory impact of miR-92a in the development of OS. Quantitative real-time PCR (qRT-PCR) results revealed that the expression of miR-92a was aberrantly overexpressed in human OS cell lines. By using cell counting kit-8 (CCK-8) assays, colony formation assays, flow cytometric analyses and Transwell assays, our data suggested that up-regulation of miR-92a promoted the proliferation, migration, and invasion of MNNG and U2OS cells, while inhibiting their apoptosis. In contrast, the knockdown of miR-92a effectively reversed these cellular biological behaviors. Furthermore, bioinformatics analysis indicated that Dickkopf-related protein 3 (DKK3) was a possible target of miR-92a. Subsequently, negative regulation of miR-92a on DKK3 was observed, which further supported the direct binding between them. In addition, silencing DKK3 rescued the inhibitory effect of miR-92a inhibitor on the development of OS. To sum up, our study revealed that miR-92a played a carcinogenic role in the growth of OS by promoting the tumorigenesis of OS cells via targeting of DKK3, thus revealing a new therapeutic target for OS.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Song ◽  
Roded Sharan ◽  
Ivan Ovcharenko

Abstract Background Robustness and evolutionary stability of gene expression in the human genome are established by an array of redundant enhancers. Results Using Hi-C data in multiple cell lines, we report a comprehensive map of promoters and active enhancers connected by chromatin contacts, spanning 9000 enhancer chains in 4 human cell lines associated with 2600 human genes. We find that the first enhancer in a chain that directly contacts the target promoter is commonly located at a greater genomic distance from the promoter than the second enhancer in a chain, 96 kb vs. 45 kb, respectively. The first enhancer also features higher similarity to the promoter in terms of tissue specificity and higher enrichment of loop factors, suggestive of a stable primary contact with the promoter. In contrast, a chain of enhancers which connects to the target promoter through a neutral DNA segment instead of an enhancer is associated with a significant decrease in target gene expression, suggesting an important role of the first enhancer in initiating transcription using the target promoter and bridging the promoter with other regulatory elements in the locus. Conclusions The widespread chained structure of gene enhancers in humans reveals that the primary, critical enhancer is distal, commonly located further away than other enhancers. This first, distal enhancer establishes contacts with multiple regulatory elements and safeguards a complex regulatory program of its target gene.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2474-2474
Author(s):  
Jesus Duque-Afonso ◽  
Aitomi Essig ◽  
Leticia M Solari ◽  
Tobias Berg ◽  
Heike L. Pahl ◽  
...  

Abstract Abstract 2474 Background: The leukemia-specific oncofusion protein AML1/ETO regulates different target genes, including the LAT2 gene (encoding the adaptor molecule LAT2/NTAL/LAB), which is epigenetically repressed by AML1/ETO as we have previously described. LAT2 is phosphorylated by c-kit and has a role in mast cell and B cell activation. To address the functional role of LAT2 during myeloid differentiation, expression studies were performed in myeloid cell lines, and LAT2 was overexpressed by retroviral gene transfer in AML1/ETO-positive Kasumi-1 cells and AML1/ETO-negative U-937 cells. Methods: To induce monocytic and granulocytic differentiation, the myeloid cell lines U-937, HL-60 and NB4 were treated with PMA and ATRA, respectively, and LAT2 expression measured by both Northern and Western blot. LAT2 was overexpressed in Kasumi-1 and U-937 cells by use of the retroviral vector pMYSiG-IRES-GFP. Virus was produced in 293T cells and titrated in TE671 cells. Following transduction, GFP-positive cells were sorted by fluorescence-activated cell sorting (FACS). Transduced cells were treated with PMA (2 and 10 nM for 24 and 48 hours) and ATRA (0.1 μM and 0.5 μM for 48 and 96 hours), respectively. Results: The AML1/ETO-negative myeloid cell lines HL-60, NB4 and U-937 readily expressed LAT2, which was further upregulated by PMA, and transiently downregulated with ATRA. In the AML1/ETO-positive Kasumi-1 and SKNO-1 cells, LAT2 expression was absent. To address the functional role of this repression, forced expression of LAT2 was achieved in Kasumi-1 and U-937 cells and resulted in effective processing of LAT2 protein (confirmed by Western blot), and a decrease in the expression of the differentiation markers CD11b and CD11c (FACS analysis) in Kasumi-1 but not U-937, with only minor effects of LAT2 overexpression upon apoptosis and cell growth arrest. Notably, during both PMA- and ATRA-induced differentiation, a striking maturation block occurred in Kasumi-1 (measured by CD11b/CD11c expression, observed at different doses and time points of these treatments), while differentiation of U-937 cells was unimpaired by overexpression of LAT2. Conclusions: In AML1/ETO-negative leukemia cells, LAT2 expression is differentially regulated during monocytic and granulocytic differentiation. In AML1/ETO-positive leukemia cells, in which LAT2 is repressed, LAT2 re-expression imposes a striking maturation block. Graded expression of this novel AML1/ETO target gene may therefore play an important role in maintaining the phenotypic characteristics of this leukemia subtype. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 861-861
Author(s):  
Kazuaki Teshima ◽  
Miho Nara ◽  
Atsushi Watanabe ◽  
Mitsugu Ito ◽  
Yoshiaki Hatana ◽  
...  

Abstract Abstract 861 Background: Mantle cell lymphoma (MCL) is categorized as an indolent CD5+ B-cell lymphoma and is associated with numerous genomic copy number alterations, including 9p21 deletion (CDKN2A) and 10p12 amplification (BMI1). The target gene of the 10p12 amplification has been identified as BMI1, whose overexpression is frequently observed in the blastoid variant of MCL. CDKN2A is also well-known target of BMI1 in solid tumor. So, it has been hypothesized that BMI1 regulates CDKN2A in MCL. However there are the MCL cases with both 10p12 amplification and 9p21 homozygous deletion, suggesting that BMI1 might regulate the other target gene(s). The proto-oncogene, BMI1 is crucially involved in cancer stem cell maintenance and the upregulation has been demonstrated in aggressive or relapsed cases of solid tumors. Cancer stem cells are often identified in the side population (SP) of cancer cells, which is detected based on the cell's ability to export Hoechst 33342 dye via an ATP-binding cassette (ABC) membrane transporter, which gives the SP a distinct low-staining pattern. Aim of the study: The aim of this study is to determine the role of BMI1 in MCL initiating cells, especially in the relapsed cases. In this presentation, we show that the SP fraction has stem cell-like characteristics and high tumorigenic potential, and that BMI1 expression is upregulated in the SP in both relapsed MCL cases and MCL cell lines. Further we show that miR-16 is upstream regulator of the BMI1 in MCL. Results: To determine the role of BMI1 in the pathogenesis of MCL-initiating cells, we firstly examined BMI1 expression at primary MCL cases and found that its expression is stronger in cases of recurrent MCL than at initial diagnosis. We next characterized the MCL SP and found that the SP cells exhibit cancer stem cell-like features and upregulated BMI1 expression, which appears to enhance anti-apoptosis activity. Knocking down of BMI1 increases apoptosis and reduces tumorigenicity in CDKN2A−/− MCL cell lines (REC1 and Z138c). Subcutaneous inoculation of NOD/Shi-scid IL-2γnul (NOG) mice with CDKN2A−/− MCL cell lines, siBMI1-expressing cells were significantly smaller than those in mice receiving control siRNA in vivo. Chip assay showed that BMI1 interacts with BCL2L11/Bim and PMAIP3/Noxa, which were recently shown to be Bmi-1 target. These results suggest that BMI1/Bmi-1 may regulate Bim and/or Noxa to inhibit apoptosis in MCL cells. Furthermore, upon screening for upstream regulator of BMI1, we found that expression of a non-cording regulatory RNA, microRNA-16 (miR-16) is weaker in MCL SP cells than in non-SP cells. To investigate relationship between BMI1 and miR-16, we transfected miR-16 into MCL cell lines, and found that it directly downregulated BMI1, leading to reductions in tumor size following in vivo lymphoma xenograft (NOG mice). Finally, we find that bortezomib, which is known to be a proteasome inhibitor, led to dose-and time- dependent reductions in Bmi-1 expression with re-upregulation of miR-16 in both cell lines and a primary sample. Conclusion: We conclude that dysregulation of miR-16 and BMI1 plays a key role in lymphomagenesis by reducing MCL cell apoptosis, especially in refractory/recurrent cases via enhancement of anti apoptotic function. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document