scholarly journals Fatty Acid Contents and Stability of Oyster Nut Oil (Telfairia pedata) Compared to Flaxseed and Sunflower Oil

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Emmanuel Mwakasege ◽  
Anna Treydte ◽  
Otmar Hoeglinger ◽  
Neema Kassim ◽  
Edna Makule

The selection of healthy fats for consumption is important. Linoleic acid (LA) (omega-6) and alpha-linolenic acid (ALA) (omega-3) are essential polyunsaturated fatty acids required for the maintenance of good health; however, LA derivatives such as arachidonic acid (AA) are associated with the onset of inflammatory diseases, and both are prone to oxidation and deterioration. This study compared the fatty acid contents, peroxide value (PV), p-anisidine value (p-AV), and free fatty acids (FFA) of the oyster nut oil with refined sunflower, nonrefined sunflower, and flaxseed oil stored at 27°C for 40 days. Flaxseed oil had significantly high ALA content (59.8%) compared to 0.1-0.5% for oyster nut and sunflower oil brands. The LA content was high in sunflower brands (50.3-52.8%) compared to the oyster nut (48%) and flaxseed oil 14.7%. Oleic acid was lower in oyster nut oil (8.6%) and flaxseed oil 15.8% compared to sunflower brands (35.7-38.2%). As a consequence, oyster nut and flaxseed recorded higher PV of 4.35-2.88 mEq O2/kg and FFA 0.26-0.47% compared to sunflower brands. The p-AV recorded small values which were not significantly different in all samples. Although oyster nut is widely consumed by pregnant and lactating women across Africa, its keeping quality in nonrefined form is low compared to flaxseed and sunflower oil as shown in this study. Hence, the fatty acid contents in oyster nuts should be consumed in other alternative forms such as flour and roasted kernels rather than its oil when in nonrefined form. This study will enable the consumption balance of omega-6/omega-3 fatty acids and the keeping quality of oils which is key to health.

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
C. Castro-Correia ◽  
S. Sousa ◽  
S. Norberto ◽  
C. Matos ◽  
V. F. Domingues ◽  
...  

Context. Several studies have shown a link between proinflammatory activity and the presence or deficit of some fatty acids. Inflammation is associated with several diseases including diabetes.Objective. To characterize and compare the fatty acids profiles in children with inaugural type 1 diabetes, diabetic children (at least 1 year after diagnosis), and healthy children.Design. Plasma fatty acids profiles in children with inaugural diabetes, children with noninaugural diabetes, and controls, all of whom were prepubescent with a BMI < 85th percentile, were evaluated.Results. Omega-3 fatty acid levels were higher in recently diagnosed subjects with diabetes than in controls. The ratio of omega-6/omega-3 fatty acids was higher in the control population. Omega-6 fatty acid levels were higher in the nonrecent diabetic subjects than in the children with recently diagnosed diabetes, and the levels were higher in the nonrecent diabetes group compared to the control group.Conclusion. Our findings showed higher levels of alpha-linolenic acid, EPA, and DHA, as well as mono- and polyunsaturated fatty acids, in diabetic children. These findings reinforce the importance of precocious nutritional attention and intervention in the treatment of diabetic children.


2016 ◽  
Vol 242 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Xi Chen ◽  
Xue Du ◽  
Jianliang Shen ◽  
Lizhi Lu ◽  
Weiqun Wang

Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


LWT ◽  
2021 ◽  
pp. 112064
Author(s):  
Ranko S. Romanić ◽  
Tanja Z. Lužaić ◽  
Bojana Đ. Radić

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 134-135
Author(s):  
Artemis P Simopoulos

Abstract Human beings evolved on a diet that was balanced in the omega-6 and omega-3 essential fatty acids to which their genes were programmed to respond. Studies on gene-nutrient interactions using methods from molecular biology and genetics have clearly shown that there are genetic differences in the population, as well as differences in the frequency of genetic variations that interact with diet and influence the growth and development of humans and animals, as well as overall health and chronic disease. Nutrigenetics refers to studies on the role of genetic variants and their response to diet. For example, persons with genetic variants in the metabolism of omega-6 and omega-3 fatty acids have different levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) based on the type of genetic variant in the Fatty Acid Desaturase 1 (FADS1) and Fatty Acid Desaturase 2 (FADS2). At the same level of linoleic acid (LA) and alpha-linolenic acid (ALA) a person with a genetic variant that increases the activity of the FADS1 will have a higher AA in the red cell membrane phospholipids and a higher risk for obesity and cardiovascular disease. Nutrigenomics refers to how nutrients (diets) influence the expression of genes. For example, diets rich in omega-3 fatty acids, EPA and DHA decrease the expression of inflammatory genes and as a result decrease the risk of obesity and cardiovascular disease. Thus, through studies on Nutrigenetics/Nutrigenomics nutritional science stands at its “golden threshold” where personalized nutrition is the future, to improve an individual’s health.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
E. Patterson ◽  
R. Wall ◽  
G. F. Fitzgerald ◽  
R. P. Ross ◽  
C. Stanton

Omega-6 (n-6) polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA)) and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are precursors to potent lipid mediator signalling molecules, termed “eicosanoids,” which have important roles in the regulation of inflammation. In general, eicosanoids derived from n-6 PUFA are proinflammatory while eicosanoids derived from n-3 PUFA are anti-inflammatory. Dietary changes over the past few decades in the intake of n-6 and n-3 PUFA show striking increases in the (n-6) to (n-3) ratio (~15 : 1), which are associated with greater metabolism of the n-6 PUFA compared with n-3 PUFA. Coinciding with this increase in the ratio of (n-6) : (n-3) PUFA are increases in chronic inflammatory diseases such as nonalcoholic fatty liver disease (NAFLD), cardiovascular disease, obesity, inflammatory bowel disease (IBD), rheumatoid arthritis, and Alzheimer's disease (AD). By increasing the ratio of (n-3) : (n-6) PUFA in the Western diet, reductions may be achieved in the incidence of these chronic inflammatory diseases.


2018 ◽  
Vol 9 (3) ◽  
pp. 1621-1637 ◽  
Author(s):  
David Navarro-Herrera ◽  
Paula Aranaz ◽  
Laura Eder-Azanza ◽  
María Zabala ◽  
Cristina Hurtado ◽  
...  

Omega-6 fatty acids might induce beneficial effects on body fat-content and metabolism.


2015 ◽  
Vol 39 (4) ◽  
pp. 372-380 ◽  
Author(s):  
Gisele Teixeira de Souza Sora ◽  
Aloisio Henrique Pereira Souza ◽  
Acácio Antônio Ferreira Zielinski ◽  
Charles Windson Isidoro Haminiuk ◽  
Makoto Matsushita ◽  
...  

Fatty acids have a great metabolic and structural importance. Evaluation of fatty acid composition of peppers is still incomplete. Pulps and seeds from six varieties of the genus Capsicum were evaluated in this work with respect to their contents in fatty acids. A total of 25 different fatty acids, including some with odd number of carbons were identified in the samples. The most abundant fatty acids were palmitic (16:0), oleic (18:1n-9) and linoleic (18:2n-6) acids. The polyunsaturated:saturated fatty acid (PUFA/SFA) ratios for all peppers were high due to the elevated amounts of polyunsaturated acids, particularly linoleic acid. In the pulps, the omega-6/omega-3 ratios ranging from 1.28 to 4.33, were relatively adequate if one considers that ratios between 0.25 and 1.0 in the human diet are regarded as highly appropriate. In the seeds, the levels of omega-3 were very low whereas the levels of omega-6 were high, leading to very inadequate omega-6/omega-3 ratios ranging from 74.2 to 279.6. Principal component analysis (PCA) explained 93.49% of the total variance of the data. Considering the PUFA/SFA ratio and omega-6/omega-3 ratio, our data suggest that, among the peppers of the genus Capsicum evaluated in this work, the bell pepper and orange habanero pepper present the best nutritional characteristics concerning fatty acid composition.


2006 ◽  
Vol 52 (12) ◽  
pp. 2265-2272 ◽  
Author(s):  
Jing Cao ◽  
Kerry A Schwichtenberg ◽  
Naomi Q Hanson ◽  
Michael Y Tsai

Abstract Background: The sum of eicosapentaenoic acid (EPA, 20:5 ω3) and docosahexaenoic acid (DHA, 22:6 ω3) in erythrocyte membranes, termed the omega-3 index, can indicate suboptimal intake of omega-3 fatty acids, a risk factor for cardiovascular disease (CVD). To study the effects of fatty acid supplementation, we investigated the rate of incorporation and clearance of these fatty acids in erythrocyte membranes and plasma after intake of supplements. Methods: Twenty study participants received supplementation with either fish oil (1296 mg EPA + 864 mg DHA/day) or flaxseed oil (3510 mg alpha-linolenic acid + 900 mg linoleic acid/day) for 8 weeks. We obtained erythrocyte membrane and plasma samples at weeks 0, 4, 8, 10, 12, 14, 16, and 24 and extracted and analyzed fatty acids by gas chromatography. Results: After 8 weeks of fish oil supplementation, erythrocyte membrane EPA and DHA increased 300% (P &lt;0.001) and 42% (P &lt;0.001), respectively. The mean erythrocyte omega-3 index reached a near optimal value of 7.8%, and remained relatively high until week 12. EPA and DHA showed greater increases and more rapid washout period decreases in plasma phospholipids than in erythrocyte membranes. Flaxseed oil supplementation increased erythrocyte membrane EPA to 133% (P &lt;0.05) and docosapentaenoic acid (DPA, 22:5 ω3) to 120% (P &lt;0.01) of baseline, but DHA was unchanged. In plasma phospholipids, EPA, DPA, and DHA showed a slight but statistically insignificant increase. Conclusions: Erythrocyte membrane EPA+DHA increases during relatively short intervals in response to supplementation at rates related to amount of supplementation. These results may be useful to establish appropriate dosage for omega-3 fatty acid supplementation.


2020 ◽  
Vol 9 (3) ◽  
pp. 232
Author(s):  
Januar Hadi Prasetyo ◽  
Agustono Agustono ◽  
Widya Paramitha Lokapirnasari

Omega-3 fatty acids (Alpha-linolenic acid) and omega-6 fatty acids (Linoleic acid) are a group of essential fatty acids. Essential fatty acids are fatty acids that cannot be synthesized by the body so that must be supplied from the diet. One of the sources of essential fatty acids is derived from fish oil. This study aims to determine the effect of Crude Fish Oil (CFO) in the feed to EPA and DHA content in penaeid shrimp meat. The research method used was a completely randomized design. The treatments used are the varying content of Crude Fish Oil (CFO), which are P0 (0%), P1 (2%), P2 (4%), P3 (6%), and P4 (8%). The results of the study showed significant differences (p <0.05) on the content of EPA and DHA in penaeid shrimp meat. The highest content of EPA and DHA found in P4 treatment (8%) and the lowest at P0 treatment (0%). The use of CFO in penaeid shrimp feed need further study related to the growth of shrimps and prawns reproductive cycle to increase the productivity of penaeid shrimp. CFO on feed should be used at a dose of 6%.


Sign in / Sign up

Export Citation Format

Share Document