scholarly journals Preparation and Characterization of Chabazite from Construction Waste and Application as an Adsorbent for Methylene Blue

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xue Song ◽  
Yingming Zhang ◽  
Xiangke Cui ◽  
Fangfang Liu ◽  
Hailiang Zhao

Construction waste, produced from building projects, was utilized to prepare chabazite by alkali fusion hydrothermal synthesis method. The synthesized chabazite was used as an adsorbent for the removal of methylene blue (MB). XRD, FTIR, and N2 adsorption/desorption curves were adopted to describe the physical and chemical properties of the samples. The results show that the synthesized chabazite possesses crystalline structure, typical functional groups, and large specific surface area of 421.34 m2 g-1. Adsorption isotherms and kinetic curves show that the adsorption process follows the Langmuir model and pseudo-second-order kinetics model. The maximum adsorption capacity of MB on the synthesized chabazite reaches up to 129.18 mg g-1 at 298 K, which is about 16 times that of construction waste. The removal rate of MB reaches more than 90%, and the adsorbed amount is about 35 mg g-1 after 1 h at 298 K. Thermodynamic parameters, namely Δ H , Δ S , and Δ G of -12.83 kJ mol-1, -27.37 J mol-1 K-1, and -4.68 kJ mol-1 at 298 K, respectively, indicate that the adsorption of MB on the chabazite is physical, orderliness-tended, and spontaneous process. Moreover, the synthesized chabazite has a good property of regeneration and reuse. The results indicate that using construction waste to prepare chabazite in application as an adsorbent is feasible, which provides a novel and environment-friendly way for recycling construction waste.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


NANO ◽  
2021 ◽  
pp. 2150050
Author(s):  
Zhaoyu Han ◽  
Sen Li ◽  
Shaoxian Yin ◽  
Zhi-Qin Wang ◽  
Yanfei Cai ◽  
...  

Being the newest member of the 2D materials family, 2D-nanosheet possesses many distinctive physical and chemical properties resulting in a wide range of potential applications. Recently, it was discovered that 2D COF can adsorb single-stranded DNA (ss-DNA) efficiently as well as usefully to quench fluorophores. These properties make it possible to prepare DNA-based optical biosensors using 2D COF. While practical analytical applications are being demonstrated, the fundamental understanding of binding between 2D COF and DNA in solution received relatively less attention. In this work, we carried out a systematic study to understand the adsorption and desorption kinetic, mechanism, and influencing factors of ss-DNA on the surface of 2D COF. We demonstrated that shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of 2D COF. The adsorption is favored by a higher pH. The different buffer types also can affect the adsorption. In Tris-HCl solution, the adsorption reached highest efficiency. By adding the complementary DNA (cDNA), desorption of the absorbed DNA on 2D COF can be achieved. Further, desorption efficiency can also be exchanged by various surfactant in solution. These findings are important for further understanding of the interactions between DNA and COFs and for the optimization of DNA and COF-based devices and sensors.


Aluminium metal matrix super alloy belongs to advanced category of super alloy which finds wide place in numerous important industry such as aerospace, automobile, missiles etc. because of its elevated mechanical, physical and chemical properties. The innovative manufacturing processes have come into existence to machine such kinds of newer super alloys. Electric discharge machining (EDM) is such a process which is comprehensively applied these days for machining of AMMCs. In the present research the EDM experimentation on Al/4.6B4C composites by considering discharge current, Ton and Toff as process performances have been conducted. The material removal rate and micro hardness have been considered as process output parameters. The RSMs has been developed for both the responses and finally single objective optimization of both the response parameters have been done by applying RSM- genetic algorithm-based optimization (GA) approach. It has been observed that GA gives better results.


2020 ◽  
Vol 81 (6) ◽  
pp. 1273-1282 ◽  
Author(s):  
Hangdao Qin ◽  
Hao Cheng ◽  
Chenggui Long ◽  
Xiaogang Wu ◽  
Yanhong Chen ◽  
...  

Abstract N, S co-doped MnFe2O4@C magnetic nanoparticles were successfully synthesized by a simple method involving the preparation of MnFe2O4 nanoparticles and subsequent pyrolysis treatment. The physical and chemical properties of MnFe2O4, MnFe2O4@C and MnFe2O4@C–NS nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), N2 adsorption–desorption and the pH at the point of zero charge. Their performances in the adsorption of Hg(II) from water were investigated. The adsorption process followed pseudo-second-order kinetics and the experimental data of equilibrium isotherms fitted well with the Langmuir model. MnFe2O4@C–NS showed the highest adsorption capacity of 108.56 mg/g, increasing more than 1.7 times compared to MnFe2O4. The enhanced adsorption performance was attributed to the larger specific surface area as well as the complexation of N and S ligands on the surface. The thermodynamic parameters of ΔH°, ΔS° and ΔG° at 30 °C were −24.39 kJ/mol, −0.046 kJ/mol K and −10.45 kJ/mol, respectively, which indicated that the adsorption of Hg(II) on MnFe2O4@C–NS was exothermic and spontaneous in nature. Moreover, MnFe2O4@C–NS showed superior selectivity towards Hg(II) compared with other metal ions generally present in mercury-containing industrial wastewater.


2020 ◽  
Vol 49 (1) ◽  
pp. 55-62
Author(s):  
Akbar Eslami ◽  
Zahra Goodarzvand Chegini ◽  
Maryam Khashij ◽  
Mohammad Mehralian ◽  
Marjan Hashemi

Purpose A nanosilica adsorbent was prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET. Design/methodology/approach The optimum conditions for the highest adsorption performance were determined by kinetic modeling. The adsorbent was used for the adsorption of acetaminophen (ACT), and the parameters affecting the adsorption were discussed like pH, initial concentration, contact time and adsorbent dosage. The adsorbent have been characterized by SEM, XRD and BET analysis. The kinetic models including pseudo-first-order and pseudo-second-order with Langmuir and Freundlich isotherm models were applied to investigate the kinetic and isotherms parameters. Findings The adsorption of ACT increased to around 95% with the increase of nanosilica concentration to 30 g/L. Moreover, the adsorption process of ACT follows the pseudo-second-order kinetics and the Langmuir isotherm with the maximum adsorption capacity of 609 mg/g. Practical implications This study provided a simple and effective way to prepare of nanoadsorbents. This way was conductive to protect environmental and subsequent application for removal of emerging pollutants from aqueous solutions. Originality/value The novelty of the study is synthesizing the morphological and structural properties of nanosilica-based adsorbent (specific surface area, pore volume and size, shape and capability) and improving its removal rate through optimizing the synthesis method; and studying the capability of synthesis of nanosilica-based adsorbent for removal of ACT as a main emerging pharmaceutical water contaminant.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37441-37446 ◽  
Author(s):  
Qingzhi Wang ◽  
Jiankun Liu ◽  
Lingqing Wang

Freeze–thaw cycles (FTCs) can strongly influence the physical and chemical properties of soils in cold regions, which can in turn affect the adsorption–desorption characteristics of phosphorus (P) in the soil.


2017 ◽  
Vol 888 ◽  
pp. 485-490
Author(s):  
Tengku Sharifah Marliza ◽  
Mohd Ambar Yarmo ◽  
Azizul Hakim ◽  
Maratun Najiha Abu Tahari ◽  
Yun Hin Taufiq-Yap

Supported ionic liquid (IL) [bmim][CF3SO3] on SiO2 was prepared, characterized and its potential evaluated for CO2 capture via adsorption and desorption studies using gas adsorption analyzer. The physical and chemical properties were determined using N2 adsorption/desorption and CO2-TPD analysis. The increasing IL loading caused a drastic decrease in the surface area as well as pore volume due to the confinement of IL within the micropore and mesopore area. However, the increasing IL loading increased the basicity of the sorbent which significantly enhanced CO2 chemisorption. Supported [bmim][CF3SO3] on SiO2 revealed the physical and chemical adsorption of CO2 and resulted in a remarkable CO2 adsorption capacity at atmospheric pressure and room temperature (66.7 mg CO2/gadsorbent) which has great potential in industrial applications.


2015 ◽  
Vol 3 (31) ◽  
pp. 16120-16131 ◽  
Author(s):  
L. M. Acuña ◽  
F. F. Muñoz ◽  
C. A. Albornoz ◽  
A. G. Leyva ◽  
R. T. Baker ◽  
...  

The effect of Tb content and synthesis method on the physicochemical properties of nanostructured Tb-doped ceria spheres was studied. The nanostructured spheres contained more Tb as Tb3+ than conventionally prepared nanopowders.


2014 ◽  
Vol 694 ◽  
pp. 382-386 ◽  
Author(s):  
Bo Liang ◽  
Wan He Zhao ◽  
Kai Huang ◽  
Hong Min Zhu

The removal of Mn (II) ion by saponified garlic peel (S-GP) was investigated using batch adsorption. SEM and FT-IR were employed to investigate the physical and chemical properties of S-GP. The adsorption was evaluated as a function of initial metal ion concentration, contact time and temperature. The maximum adsorption capacity for Mn (II) was 0.51 mol/kg, and the adsorption process followed the Langmuir model. Pseudo-second-order models fitted the experimental data well and kinetic parameters, rate constants, equilibrium sorption capacity and related correlation coefficients at various temperatures were calculated and discussed. A possible adsorption mechanism based on a cation exchange was proposed for the adsorption of Mn (II).


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Juzheng Zhang ◽  
Xin Liu ◽  
Shanmin Gao ◽  
Quanwen Liu ◽  
Baibiao Huang ◽  
...  

A yellow/brown powder of(I2)nsensitized nanoporous TiO2was obtained via an hydrolysis with TiCl4and iodine hydrosol as raw material. I2nanoparticles in the hydrosol were used as seeds to initiate the nucleation of a precursory TiO2shell. The hybridized jumbles were further calcinated at different temperatures. The structure, crystallinity, morphology, and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2adsorption-desorption isotherms measurements, and UV-vis diffuse reflectance spectroscopy (DRS). The formation mechanism of these(I2)nsensitized nanoporous TiO2is discussed. Methylene blue solutions were used as model wastewater to evaluate the visible light photocatalytic activity of the samples. The results indicate that iodine can exist even in high-temperature calcination for iodine being encapsulated in the nanocavities inside TiO2. The degradation of methylene blue (MB) accorded with the first-order reaction model.


Sign in / Sign up

Export Citation Format

Share Document