scholarly journals PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Wittaya Chaiwangyen ◽  
Komsak Pintha ◽  
Payungsak Tantipaiboonwong ◽  
Piyawan Nuntaboon ◽  
Orawan Khantamat ◽  
...  

Air pollution is one of the largest global environmental health hazards that threaten premature mortality or morbidity. Particulate matter 10 (PM10) has been demonstrated to contribute to several human diseases via dysregulated miRNA expression. Trophoblast cells play a key role in implantation and placentation for a successful pregnancy. Nonetheless, the PM10 associated trophoblast cell functions during pregnancy and miRNA expression are still unknown. Our study showed that PM10 affected HTR-8/SVneo cell viability and also decreased cell proliferation, migration, and invasion. A high concentration of PM10 caused an increase in HTR-8/SVneo cell apoptosis. Treatment with PM10 induced inflammation through the upregulated IL-1β, IL-6, and TNF-α expression in trophoblast cells. In PM10-treated HTR-8/SVneo cells, miR-125b-5p expression was considerably increased and TXNRD1 was found to be negatively related to miR-125b-5p. Collectively, our findings revealed that PM10 could alter miR-125b-5p expression by targeting TXNRD1 and suppressing trophoblast cell functions. Additional investigations relating to the function of miR-125b-5p and its target on particulate pollution exposure in trophoblast are warranted for future biomarker or effective therapeutic approaches.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yajing Huang ◽  
Yanming Wu ◽  
Xinwen Chang ◽  
Yan Li ◽  
Kai Wang ◽  
...  

Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs) are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.


Reproduction ◽  
2020 ◽  
Vol 160 (1) ◽  
pp. 21-29
Author(s):  
Rongli Wang ◽  
Li Zou

A successful pregnancy crucially depends on well-regulated extravillous trophoblast migration and invasion. Maternally expressed gene 3 (MEG3) is a long noncoding RNA that plays an important role in regulating trophoblast cells cell function. As previously reported, the expression of MEG3 was reduced in preeclampsia, and downregulation of MEG3 could suppress trophoblast cells migration and promote its apoptosis. However, the downstream regulatory mechanism of MEG3 remains unknown. As reported, MEG3 could inhibit cell proliferation in endometrial carcinoma by regulating Notch signaling. Our previous studies have demonstrated that Notch1 is downregulated in preeclampsia and that inhibiting the expression of Notch1 could promote trophoblast cell apoptosis. Therefore, this study was designed to investigate the role of MEG3 and its the relationship with Notch1 in trophoblasts. In this study, the mRNA expression levels of both MEG3 and Notch1 were decreased in preeclampsia placenta (n = 15) compared to the normal samples (n = 15). Exogenous upregulation and downregulation of MEG3 in HTR8/SVneo cells were performed to investigate the role of MEG3 in cell biological behavior and its effects on Notch1 expression. The results showed that MEG3 enhancement promoted trophoblast cell migration and invasion and inhibited cell apoptosis. Downregulation of MEG3 elicited the opposite results. Associated factors, such as matrix metalloproteinases 2 (MMP2), BAX, and Bcl-2, were examined at the mRNA and protein levels. Our study demonstrated that MEG3 could regulate Notch1 expression to modulate trophoblast cell migration, invasion, and apoptosis, which may represent the molecular mechanism of poor placentation during preeclampsia.


2021 ◽  
Vol 22 (13) ◽  
pp. 7226
Author(s):  
Violeta Stojanovska ◽  
Aneri Shah ◽  
Katja Woidacki ◽  
Florence Fischer ◽  
Mario Bauer ◽  
...  

Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.


2019 ◽  
Vol 25 (11) ◽  
pp. 755-771 ◽  
Author(s):  
Changwon Yang ◽  
Whasun Lim ◽  
Junghyun Park ◽  
Sunwoo Park ◽  
Seungkwon You ◽  
...  

Abstract Human umbilical cord mesenchymal stem cells (MSCs) have been reported to improve the migration and invasion of trophoblast cells; however, little is known about whether MSC-derived exosomes and exosomal miRNAs can regulate trophoblast cell properties. In this study, we investigated whether exosomal miRNAs from amniotic fluid-derived MSC (AF-MSC) could regulate the inflammatory response of the human trophoblast cell line HTR8/SVneo. We verified the anti-inflammatory effects of AF-MSCs on lipopolysaccharide (LPS)-induced inflammatory trophoblast cells and found that miR-146a-5p and miR-548e-5p in the AF-MSC–derived exosomes regulate nuclear factor κB, AKT and mitogen-activated protein kinase protein phosphorylation. Furthermore, we found that the transfection of human trophoblast cells with miR-146a-5p and miR-548e-5p inhibitors reduced trophoblast migration (P < 0.05 vs control) and the expression of proliferating cell nuclear antigen, a protein essential for cell proliferation (P < 0.01 vs control). In particular, the miR-548e-5p inhibitor induced apoptosis, while tumor necrosis factor receptor–associated factor 6, a predicted target of miR-146a-5p and miR-548e-5p, was involved in the regulation of oxidative stress in the human trophoblast cells. In a mouse model of LPS-induced preterm birth (PB), miR-146a-5p expression was found to be relatively low in the group in which the effect of AF-MSCs was insignificant. However, this study is limited in that the changes in the expression of some genes in response to AF-MSCs differ between the cell line and mouse model. Collectively, these data show that exosomal miR-146a-5p and miR-548e-5p from AF-MSCs have anti-inflammatory effects on human trophoblast cells and may be novel targets for treating inflammatory diseases and associated problems that occur during pregnancy, such as PB.


2020 ◽  
Vol 15 (1) ◽  
pp. 400-408
Author(s):  
Xin You ◽  
Hongyan Cui ◽  
Ning Yu ◽  
Qiuli Li

AbstractPreeclampsia (PE) is a serious disease during pregnancy associated with the dysfunction of trophoblast cell invasion. DDX46 is a kind of RNA helicase that has been found to regulate cancer cell metastasis. However, the role of DDX46 in PE remains unclear. Our results showed that the mRNA levels of DDX46 in placental tissues of pregnant women with PE were markedly lower than those in normal pregnancies. Loss-of-function assays showed that knockdown of DDX46 significantly suppressed cell proliferation of trophoblast cells. Besides, DDX46 knockdown decreased trophoblast cell migration and invasion capacity. In contrast, the overexpression of DDX46 promoted the migration and invasion of trophoblast cells. Furthermore, knockdown of DDX46 caused significant decrease in the levels of p-PI3K, p-Akt, and p-mTOR in HTR-8/SVneo cells. In addition, treatment with IGF-1 reversed the inhibitory effects of DDX46 knockdown on proliferation, migration, and invasion of HTR-8/SVneo cells. In conclusion, these data suggest that DDX46 might be involved in the progression of PE, which might be attributed to the regulation of PI3K/Akt/mTOR signaling pathway. Thus, DDX46 might serve as a therapeutic target for the treatment of PE.


2022 ◽  
Vol 12 (1) ◽  
pp. 81-89
Author(s):  
Sheng Li ◽  
Youhua Yang ◽  
Fang Liu ◽  
Qian Song

To explore the mechanism of miR-29b in gestational diabetes mellitus (GDM) and its effect on the function of trophoblast cell (TBC), the placenta tissues of 55 normal term pregnancies and 55 GDM patients were selected and rolled into control group and observation group. In the early stage, microRNA (miRNA) chips were utilized to screen the differentially expressed miRNAs in the placenta of observation group and control group. According to the microarray results of miRNAs, three differentially expressed miRNAs, namely let-7b, miR-1202, and miR-29b were selected. Then, the differences in the miR-29b level in the four groups were analyzed, namely the microRNA-29b (miR-29b minic), mini-control (minic control), microRNA-29b inhibitor (miR-29b inhibitor), and inhibitor control (inhibitor control). The results showed that miR-29b level in the placenta of observation group was substantially inferior to that of controls, with remarkable differences (P < 0.05). miR-29b level in miR-29b minic and minic control had significant changes (P < 0.01). The TBC activity of minic control was greatly superior to that of minic control, and there was considerable difference between the two (P < 0.05). The difference between miR-29b inhibitor and inhibitor control in TBC was not obvious, without considerable differences (P > 0.05). The invasion ability of miR-29b inhibitor TBC was notably superior to inhibitor control, and there were substantial differences (P < 0.05). To sum up, miR-29b had a significant inhibitory effect on the proliferation and cell activity of TBC, and can promote the apoptosis and death of TBC. Moreover, its inhibitory effect on cell migration and invasion was also suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Bai ◽  
Qiang Du ◽  
Le Zhang ◽  
Ling Li ◽  
Nana Wang ◽  
...  

This study aims to investigate the effect of angiopoietin like 8 (ANGPTL8) on gestational diabetes mellitus (GDM) and insulin resistance (IR). The GDM model was induced by high fat diet in mice, and IR was observed. The expression and secretion of ANGPTL8 were promoted in placenta of GDM mice. IR was induced in trophoblast cell HTR-8/SVneo by treatment of high concentration of insulin, and the expression levels of ANGPTL8 were increased. Silencing of ANGPTL8 alleviated IR and decreased glucose uptake in HTR-8/SVneo cells. However, the inflammation and oxidative stress in IR cells were not restrained by ANGPTL8 knockdown. In addition, c-Jun N-terminal kinase (JNK) signaling was activated by IR, which was inhibited by silencing of ANGPTL8. The effect of ANGPTL8 knockdown on IR was attenuated by JNK antagonist, and aggravated by JNK agonist, suggesting that ANGPTL8 affected IR by regulating JNK signaling. In conclusion, we demonstrated that the silencing of ANGPTL8 ameliorated IR by inhibiting JNK signaling in trophoblast cells. These findings may provide novel insights for diagnosis and treatment of GDM in clinic.


2022 ◽  
Vol 12 (2) ◽  
pp. 248-257
Author(s):  
Ying Xie ◽  
Shan Tian

We aimed to explore the mechanism by how microRNA (miRNA)-325 derived from marrow mesenchymal stem cell exosomes (MSC-exos) affects the trophoblast progression in preeclampsia (PE). RT-qPCR detected the level of miRNA let-7b and FOXO1 in the placenta tissue of PE patients. Functional experiment was performed to analyze the effect of FOXO1 inhibitor and let-7b mimics on cell migration, invasion and apoptosis through Transwell assay and TUNEL staining. The trophoblast cell was co-cultured with overexpressed-miR-325 MSC-exos to measure gene expression and cell progression. let-7b was highly and FOXO1 was lowly expressed in PE placenta tissue. let-7b directly targeted and inhibited FOXO1 expression. Importantly, as miR-325 was internalized by trophoblast cells through MSC-exos, MSC-exos overexpressing miR-325 inhibited let-7b expression in trophoblasts, up-regulated FOXO1 and activated AKT signaling pathway. Further, MSC-exos treatment promoted invasion and migration of trophoblast cell and inhibited apoptosis. In conclusion, miR-325 derived from MSC-exos promotes the invasion and migration of trophoblast cells in PE through inhibition of let7b and upregulation of FOXO1.


Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Yulei Zhang ◽  
Xiaoqin Chen

SummaryThe abnormal expression of lncRNAs and miRNAs has been found in the placentas of patients with preeclampsia (PE). Therefore, we determined the role of lncRNA FOXD2-AS1/miR-3127 in trophoblast cells. The expression of lncRNA FOXD2-AS1 was detected by qRT-PCR. The proliferation, migration and invasion ability of trophoblast cells were evaluated using CCK-8, wound healing and transwell assays. The target gene of lncRNA FOXD2-AS1 was determined by StarBase and luciferase reporter assays. Western blotting was used to analyze the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). The results showed that FOXD2-AS1 affected trophoblast cell viability in vitro, while the expression of miR-3127 was decreased. FOXD2-AS1 silencing decreased the promotion effects on trophoblast cell induced by miR-3127 inhibition. In addition, FOXD2-AS1 and miR-3127 presented the same effect on MMP2 and MMP9 levels. lncRNA FOXD2-AS1 modulated trophoblast cell proliferation, invasion and migration through downregulating miR-3127 expression. Therefore, lncRNA FOXD2-AS1 could act as a latent therapeutic marker in preeclampsia.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Meiyuan Jin ◽  
Shouying Xu ◽  
Jiayong Li ◽  
Yingyu Yao ◽  
Chao Tang

Abstract Background Insufficient migration and invasion during trophoblast epithelial-mesenchymal transition (EMT) results in the occurrence and development of preeclampsia (PE), and our previous study has screened 52 miRNAs, whose expression levels are altered in the placental samples from PE patients, compared with the normal group. Among those, miR-3935 is one of the miRNAs being most significantly down-regulated, indicating its involvement in PE. However, the exact effect and molecular mechanisms remain unknown. Methods In the present study, we investigate the roles and underlying mechanisms of miR-3935 in trophoblast EMT by use of the human extra-villous trophoblast cell line HTR-8/SVneo as well as human placental tissues and maternal blood samples obtained from 15 women with normal pregnancies and 15 women with PE. Experimental methods include transfection, quantitative reverse transcription-PCR (qRT-PCR), western blot, immunofluorescence staining, dual-luciferase assays, in vitro invasion and migration assays, RNA-Seq analysis, bisulfite sequencing and immunohistochemistry staining. Results MiR-3935 expression is significantly decreased in both placentas and peripheral blood specimens of PE, and functionally, miR-3935 promotes EMT of trophoblast cells. Mechanistically, TRAF6 is identified to be a direct target of miR-3935 and TRAF6 exerts its negative effect on EMT of trophoblast cells by inhibition of RGS2, which down-regulates the methylation status of promoter of CDH1 gene that encodes E-Cadherin protein through induction of ALKBH1, resulting in increase of E-Cadherin and subsequently insufficient trophoblast EMT. Conclusions Together these results uncover a hitherto uncharacterized role of miR-3935/TRAF6/RGS2 axis in the function of human trophoblasts, which may pinpoint the molecular pathogenesis of PE and may be a prognostic biomarker and therapeutic target for such obstetrical diseases as PE.


Sign in / Sign up

Export Citation Format

Share Document