scholarly journals Serum Proinflammatory Mediators at Different Periods of Therapy in Patients With Multiple Myeloma

2005 ◽  
Vol 2005 (3) ◽  
pp. 171-174 ◽  
Author(s):  
Irfan Kuku ◽  
Mehmet Refik Bayraktar ◽  
Emin Kaya ◽  
Mehmet Ali Erkurt ◽  
Nihayet Bayraktar ◽  
...  

Multiple myeloma (MM) is a malignant disease characterized by the clonal proliferation of plasma cells within the bone marrow. Several cytokines have been demonstrated to be involved in the control of growth, progression, and dissemination of MM. We determined serum levels of interleukin-1β(IL-1β), soluble interleukin-2 receptor (sIL-2R), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α(TNF-α), and C-reactive protein (CRP) in 14 newly diagnosed MM patients. The median age of the patients was63.4±10.8years and all of the patients were stage III (classified according to the Durie-Salmon classification). The same parameters were measured in 15 healthy controls. In addition, we also examined the effects of vincristine-adriamycin-dexamethasone (VAD) therapy on the same parameters and mediators as well as the relationship among the parameters in the same patient groups. The serum concentrations of TNF-α, IL-1β, sIL-2R, IL-6, IL-8, and CRP (18.6±3.7pg/mL,10.1±2.8pg/mL,730±220U/mL,11.4±3.3pg/mL,23.9±8.3pg/mL, and49.9±19.5mg/dL, resp) were significantly higher in newly diagnosed MM patients than in healthy controls (P<.0001). All of the parameters were found to be significantly reduced after chemotherapy. In conclusion, we found that after the VAD therapy, the level of these cytokines which are thought to play an important role in the pathogenesis of MM was significantly suppressed. This is the first study demonstrating strong impact of VAD treatment on circulating mediators of sIL-2R and IL-8 levels parameters.

2004 ◽  
Vol 19 (1) ◽  
pp. 52-57 ◽  
Author(s):  
M.G. Alexandrakis ◽  
F.H. Passam ◽  
A. Sfiridaki ◽  
C.A. Pappa ◽  
J.A. Moschandrea ◽  
...  

Background Leptin, apart from the regulation of food intake, has been implicated in hematopoiesis, the immune response and angiogenesis. Leptin has been found to be decreased in various hematological malignancies. In the present study leptin was measured in multiple myeloma (MM) patients before and after treatment and correlated with other angiogenic molecules and markers of disease activity. Methods Serum leptin, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), interleukin-1 beta (IL-1β), beta 2 microglobulin (β2M) and C-reactive protein (CRP) were measured in 62 newly diagnosed MM patients, 22 of whom obtaining disease stabilization after treatment. The same parameters were measured in 20 healthy controls. Disease stage was defined according to the Durie-Salmon criteria. Results Leptin, VEGF, b-FGF, IL-1β, and β2M were significantly higher in newly diagnosed MM patients than in controls (p<0.05). VEGF, b-FGF, IL-1β, β2M, CRP but not leptin increased with advancing stage of disease (p<0.01). All parameters decreased significantly following treatment (p<0.001). Although IL-1β correlated positively with VEGF, β2M, b-FGF and CRP, leptin did not correlate with any of the measured parameters. Conclusion Leptin serum levels do not reflect disease severity in MM. However, there seems to be a decrease in leptin following treatment, which may be associated with an alteration in the metabolic state or the chemokine milieu.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2052-2052
Author(s):  
Arnold Bolomsky ◽  
Niklas Zojer ◽  
Martin Schreder ◽  
Heinz Ludwig

Abstract Background. The chemokine receptor CXCR3 and its binding molecules MIG, IP-10 and ITAC have been associated with tumor progression, immune escape and angiogenesis in several human malignancies. In multiple myeloma (MM), CXCR3 binding molecules were shown to induce migration of MM cells without effecting proliferation. More recent results suggest a tumor suppressive activity of IP-10. Presently, information about the precise role of CXCR3 binding chemokines in MM is limited and evidence for their clinical significance is lacking. Therefore we aimed to evaluate the prognostic relevance of CXCR3 binding chemokines in patients with MM. Patients and Methods. Serum levels of MIG, IP-10 and ITAC were analyzed by FACS-CBA array in 65 newly diagnosed MM patients. Expression of CXCR3 and its binding molecules was also analyzed by quantitative PCR in 7 human MM cell lines (HMCLs) and in a publically available gene expression dataset (GSE2658). Further analysis of MIG serum levels was performed by ELISA in an extended cohort of MM (n=105) and MGUS patients (n=17), and in healthy volunteers (n=37). Results. Determination of serum levels by FACS-CBA revealed significant expression of MIG (range: 33.4 – 157 960 pg/ml) and IP-10 (12 - 4418.8 pg/ml), while ITAC (0 - 351.5 pg/ml) was only detectable in a subset (20 of 65) of patients. Interestingly, serum levels of all three molecules showed a positive correlation with each other (MIG vs. IP-10, R=0.38, P=0.002; MIG vs. ITAC, R=0.62, P<0.0001; ITAC vs. IP-10, R=0.41, P=0.0007). We also observed a significant correlation with beta 2 microglobulin (B2M) (MIG: R=0.45, P<0.0001; IP-10: R=0.36, P=0.003; ITAC: R=0.3, P=0.016) and a trend regarding ISS stage (MIG: R=0.23, P=0.06; IP-10: R=0.24, P=0.05; ITAC: R=0.11, P=0.39). Importantly, a significant association with overall survival (OS) was observed as well. Survival was significantly worse in patients with high compared to low MIG (median OS 25.3 months vs. not reached, P=0.003) and IP-10 (19.97 months vs. not reached, P=0.0006) as well as in patients with detectable compared to absent ITAC serum levels (19.97 vs. 65.8 months, P=0.019). In multivariate analysis, MIG (P=0.03) and ITAC (P=0.013) along LDH and calcium were revealed as independent predictors of survival. Expression of CXCR3 binding chemokines was rarely detected in HMCLs (1 of 7 expressed MIG, 3 of 7 IP-10 and 2 of 7 ITAC, respectively). In line with this, in-silico analysis of previously published primary MM cell samples (n=414) (GSE2658), showed a present detection call of MIG, IP-10 and ITAC in 51 (12.3%), 11 (2.7%) and 0 (0%) patients, respectively. In contrast, all three cytokines were detectable in 100% of bone marrow plasma cells of healthy donors, MGUS and smoldering MM patients in this dataset. Hence, CXCR3 binding chemokines are silenced in myeloma cells indicating that the increased serum levels of CXCR3 binding chemokines are derived from other cell types. As MIG serum concentration was identified as one of the most important predictors for OS, we studied the prognostic relevance of this molecule in an extended cohort (n=105) of MM patients by ELISA. Median MIG levels (161.3 pg/ml, range: 9.4-1966) were significantly elevated in newly diagnosed MM patients compared to MGUS (92.7 pg/ml, range: 6.29-1303.1) and healthy volunteers (106.2, range: 51–390.6 pg/ml). MIG levels were significantly correlated with B2M, ISS stage, calcium, albumin, LDH, hemoglobin and with age (R=0.466, P<0.001). Importantly, high MIG levels predicted adverse survival (17.0 months vs. not reached, P<0.001), which was upheld when age-adjusted cut-off levels were used. In accordance with our findings, in-silico analysis of MIG expression in purified plasma cells of MM patients (n=559) treated within the total therapy 2 and 3 protocol (GSE2658) revealed shorter OS in patients with a present compared to those with an absent detection call for MIG (P=0.004). Conclusion. Our findings depict MIG, IP-10 and ITAC as novel prognostic markers for shorter survival in newly diagnosed MM patients. High serum levels of CXCR3 binding chemokines in conjunction with silenced expression in MM cells may shield myeloma cells from immune attack as previously shown for T cell lymphomas. Further experiments will aim to confirm these initial results by extending our patient cohort and define the source as well as functional role of CXCR3 chemokines in MM. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (10) ◽  
pp. 4451
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Eftimie Miutescu ◽  
Anca Hermenean

Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.


2021 ◽  
Vol 28 (1) ◽  
pp. 640-660
Author(s):  
Grace Lassiter ◽  
Cole Bergeron ◽  
Ryan Guedry ◽  
Julia Cucarola ◽  
Adam M. Kaye ◽  
...  

Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time. Given that MM is the second most common blood cancer with a characteristic and unavoidable relapse/refractory state during the course of the disease, the development of new therapeutic modalities is crucial. Belantamab mafodotin (belamaf, GSK2857916) is a first-in-class therapeutic, indicated for patients who have previously attempted four other treatments, including an anti-CD38 monoclonal antibody, a proteosome inhibitor, and an immunomodulatory agent. In November 2017, the FDA designated belamaf as a breakthrough therapy for heavily pretreated patients with relapsed/refractory multiple myeloma. In August 2020, the FDA granted accelerated approval as a monotherapy for relapsed or treatment-refractory multiple myeloma. The drug was also approved in the EU for this indication in late August 2020. Of note, belamaf is associated with the following adverse events: decreased platelets, corneal disease, decreased or blurred vision, anemia, infusion-related reactions, pyrexia, and fetal risk, among others. Further studies are necessary to evaluate efficacy in comparison to other standard treatment modalities and as future drugs in this class are developed.


Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


2018 ◽  
Vol 46 (9) ◽  
pp. 3970-3978 ◽  
Author(s):  
Shujun Guo ◽  
Qingqing Chen ◽  
Xiaoli Liang ◽  
Mimi Mu ◽  
Jing He ◽  
...  

Objective To investigate levels of regulatory B (Breg) cells, plasma cells, and memory B cells in the peripheral blood, and interleukin (IL)-10 in the serum of multiple sclerosis (MS) patients, and to determine the correlation between Breg cell levels and the Expanded Disability Status Scale (EDSS) score. Methods Levels of Breg cells, plasma cells, and memory B cells in the peripheral blood of 12 MS patients were measured using flow cytometry. IL-10 serum levels were measured by enzyme-linked immunosorbent assay. The correlation between Breg cell levels and MS EDSS score was measured using Pearson’s correlation coefficient. Results Compared with healthy controls, MS patients had decreased levels of CD19+CD24hiCD38hi Breg cells in their peripheral blood and reduced serum levels of IL-10; however, the ratios of CD19+CD27hiCD38hi plasma cells and CD19+CD27+CD24hi memory B cells to total B cells did not differ significantly between healthy controls and MS patients. CD19+CD24hiCD38hi Breg cell levels in the peripheral blood of MS patients were not significantly correlated with MS EDSS score. Conclusion Peripheral blood CD19+CD24hiCD38hi Breg cell levels and serum IL-10 levels were reduced in MS patients compared with controls, but Breg cell levels were not correlated with MS EDSS score.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 514-520
Author(s):  
E Fritz ◽  
H Ludwig ◽  
W Scheithauer ◽  
H Sinzinger

Various defects in platelet function have been reported as being associated with multiple myeloma. In 30 myeloma patients and 15 healthy controls, we investigated platelet survival using in vitro labeling of autologous platelets with 111indium-oxine and measuring the in vivo kinetics of the radioisotope. Significantly shortened platelet half- life in patients averaged 73 hours, while platelet half-life in the healthy controls averaged 107 hours. In myeloma patients, serum levels of thromboxane B2, beta-thromboglobulin, and platelet factor 4 were significantly elevated; aggregation indices were within the pathological range; platelet counts and spleen-liver indices, however, were comparable to those of the healthy control group. No statistical correlation was found between platelet half-life and paraprotein concentrations. Our findings suggest an initial--so far unexplained-- intravascular process of platelet activation and consumption that finally manifests in shortened platelet half-life. It seems that overt thrombocytopenia develops only when the compensatory capacity of the bone marrow finally becomes exhausted. Further studies should be able to elucidate the pathophysiologic processes involved.


2015 ◽  
pp. 1-2
Author(s):  
Edgar Pérez-Herrero

Multiple myeloma is the second more frequently haematological cancer in the western world, after non-Hodgkin lymphoma, being about the 1-2 % of all the cancers cases and the 10-13% of hematologic diseases. The disease is caused by an uncontrolled clonal proliferation of plasma cells in the bone marrow that accumulate in different parts of the body, usually in the bone marrow, around some bones, and rarely in other tissues, forming tumor deposits, called plasmocytomas. This uncontrolled clonal proliferation of plasma cells produces the secretion of an abnormal monoclonal immunoglobulin (paraprotein or M-protein) and prevents the formation of the other antibodies produced by the normal plasma cells that are destroyed. The anormal secretion of paraproteins unbalance the osteoblastosis and osteoclastosis processes, leading to bone lesions that cause lytic bone deposits and the release of calcium from bones (hypercalcemia) that may produce renal failure. Regions affected by bone lesions are the skull, spine, ribs, sternum, pelvis and bones that form part of the shoulders and hips. The substitution of the healthy bone marrow by infiltrating malignant cells and the inhibition of the normal production of red blood cells produce anaemia, thrombocytopenia and leukopenia. Multiple myeloma patients are immunosuppressed because of leukopenia and the abnormal immunoglobulin production caused by the uncontrolled clonal proliferation of plasma cells, being susceptible to bacterial infections, like pneumonias and urinary tract infections. The interaction of immunoglobulin with hemostatic mechanisms may lead to haemorrhagic diathesis or thrombosis. Also, disorders of the central and peripheral nervous system are part of the disease, being the more common neurological manifestations the spinal cord compressions and the peripheral neuropathies.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 292
Author(s):  
Ada-Sophia Clees ◽  
Verena Stolp ◽  
Björn Häupl ◽  
Dominik C. Fuhrmann ◽  
Frank Wempe ◽  
...  

Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1–6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.


Sign in / Sign up

Export Citation Format

Share Document