scholarly journals Spatially Resolved Texture Analysis of Aluminum-Lithium Sheet

1993 ◽  
Vol 20 (1-4) ◽  
pp. 155-163 ◽  
Author(s):  
S. M. Miyasato ◽  
J. Liu ◽  
F. Barlat

The yield strength anisotropy of aluminum-lithium sheet is known to be strongly dependent on crystallographic texture and grain morphology. In this study, the microstructure and texture of unrecrystallized and recrystallized variants of 2090 were examined in an SEM, using a combination of backscattered electron imaging and Kikuchi patterns. Local orientation measurements both through the sheet thickness and parallel to the rolling direction were used to determine the degree of misorientation between nearest-neighbor grains. Yield strength predictions based on the spatially resolved texture measurements show that the course, recrystallized grains have reduced in-plane and through-thickness anisotropy compared to the unrecrystallized structure.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra Tits ◽  
Erwan Plougonven ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
Jean-François Kaux ◽  
...  

AbstractThe enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.


Author(s):  
Etienne de Harven

Biological ultrastructures have been extensively studied with the scanning electron microscope (SEM) for the past 12 years mainly because this instrument offers accurate and reproducible high resolution images of cell shapes, provided the cells are dried in ways which will spare them the damage which would be caused by air drying. This can be achieved by several techniques among which the critical point drying technique of T. Anderson has been, by far, the most reproducibly successful. Many biologists, however, have been interpreting SEM micrographs in terms of an exclusive secondary electron imaging (SEI) process in which the resolution is primarily limited by the spot size of the primary incident beam. in fact, this is not the case since it appears that high resolution, even on uncoated samples, is probably compromised by the emission of secondary electrons of much more complex origin.When an incident primary electron beam interacts with the surface of most biological samples, a large percentage of the electrons penetrate below the surface of the exposed cells.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
Paul J. Wright

Most industrial and academic geologists are familiar with the beautiful red and orange cathodoluminescence colours produced by carbonate minerals in an optical microscope with a cold cathode electron gun attached. The cement stratigraphies interpreted from colour photographs have been widely used to determine the post depositional processes which have modified sedimentary rock textures.However to study quartzose materials high electron densities and kV's are necessary to stimulate sufficient emission. A scanning electron microscope with an optical collection system and monochromator provides an adequate tool and gives the advantage of providing secondary and backscattered electron imaging as well as elemental analysis and distribution mapping via standard EDS/WDS facilities.It has been known that the incorporation of many elements modify the characteristics of the CL emissions from geological materials. They do this by taking up positions between the valence and conduction band thus providing sites to assist in the recombination of electron hole pairs.


Author(s):  
Etienne de Harven ◽  
Davide Soligo ◽  
Roy McGroarty ◽  
Hilary Christensen ◽  
Richard Leung ◽  
...  

Taking advantage of the high elemental contrast of particles of colloidal gold observed in the backscattered electron imaging(BEI) mode of the SEM (1,2), the human T lymphocyte was chosen as a model system to study the potential value of immunogold labeling for the quantification of cell surface expressed molecules. The CD3 antigen which is expressed on all human T lymphocytes and is readily identified by the LEU-4 murine monoclonal antibody (Becton Dickinson, Mountain View, CA) followed by a gold conjugated goat anti-mouse Ig polyclonal antibody was chosen as a model target antigen. When quantified by non-EM methods, using radio-iodinated probes or FACS analysis, approximately 30,000 to 50,000 copies of this antigen per cell are enumerated.The following observations were made while attempting to quantify the same molecule by SEM after specific immunogold labeling:Imaging in the SE vs BE mode: The numbers of gold markers counted in the secondary electron (SE) imaging mode are considerably lower than those counted on the same cells in the backscattered electron (BE) imaging mode.


Author(s):  
Max T. Otten

Labelling of antibodies with small gold probes is a highly sensitive technique for detecting specific molecules in biological tissue. Larger gold probes are usually well visible in TEM or STEM Bright-Field images of unstained specimens. In stained specimens, however, the contrast of the stain is frequently the same as that of the gold labels, making it virtually impossible to identify the labels, especially when smaller gold labels are used to increase the sensitivity of the immunolabelling technique. TEM or STEM Dark-Field images fare no better (Figs. 1a and 2a), again because of the absence of a clear contrast difference between gold labels and stain.Potentially much more useful is backscattered-electron imaging, since this will show differences in average atomic number which are sufficiently large between the metallic gold and the stains normally used. However, for the thin specimens and at high accelerating voltages of the STEM, the yield of backscattered electrons is very small, resulting in a very weak signal. Consequently, the backscattered-electron signal is often too noisy for detecting small labels, even for large spot sizes.


Author(s):  
Seiji Kato

Previously, the author repeatedly confirmed the higher 5’-nucleotidase (5’-Nase) and lower alkaline phoaphatase (ALPase) activities in the wall of lymphatic capillaries reacted with the lead-based method relative to those of blood capillaries. The ALPase, on the other hand, is markedly higher in blood capillaries than in lymphatics. On the basis of these enzyme characteristics, the author has developed a 5’-Nase— ALPase double staining method to differentiate small lymphatics from blood capillaries at the level of the light microcsopy. Furthermore, we applied it to histochemical observation of the lead-containing reaction products of 5’-Nase in lymphatics on the same or adjacent cryostat sections using backscattered electron imaging (BEI) in scanning electron microscope (SEM). This paper presents a new applicability of 5’-Nase histochemistry by BEI-SEM to demonstrate the distribution of lymphatic capillaries in tissue blocks.


Author(s):  
K. Ogura ◽  
A. Ono ◽  
S. Franchi ◽  
P.G. Merli ◽  
A. Migliori

In the last few years the development of Scanning Electron Microscopes (SEM), equipped with a Field Emission Gun (FEG) and using in-lens specimen position, has allowed a significant improvement of the instrumental resolution . This is a result of the fine and bright probe provided by the FEG and by the reduced aberration coefficients of the strongly excited objective lens. The smaller specimen size required by in-lens instruments (about 1 cm, in comparison to 15 or 20 cm of a conventional SEM) doesn’t represent a serious limitation in the evaluation of semiconductor process techniques, where the demand of high resolution is continuosly increasing. In this field one of the more interesting applications, already described (1), is the observation of superlattice structures.In this note we report a comparison between secondary electron (SE) and backscattered electron (BSE) images of a GaAs / AlAs superlattice structure, whose cross section is reported in fig. 1. The structure consist of a 3 nm GaAs layer and 10 pairs of 7 nm GaAs / 15 nm AlAs layers grown on GaAs substrate. Fig. 2, 3 and 4 are SE images of this structure made with a JEOL JSM 890 SEM operating at an accelerating voltage of 3, 15 and 25 kV respectively. Fig. 5 is a 25 kV BSE image of the same specimen. It can be noticed that the 3nm layer is always visible and that the 3 kV SE image, in spite of the poorer resolution, shows the same contrast of the BSE image. In the SE mode, an increase of the accelerating voltage produces a contrast inversion. On the contrary, when observed with BSE, the layers of GaAs are always brighter than the AlAs ones , independently of the beam energy.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 732
Author(s):  
Karol Alí Apaza Alccayhuaman ◽  
Stefan Tangl ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
Patrick Heimel ◽  
...  

Volume-stable collagen matrices (VSCM) are conductive for the connective tissue upon soft tissue augmentation. Considering that collagen has osteoconductive properties, we have investigated the possibility that the VSCM also consolidates with the newly formed bone. To this end, we covered nine rat calvaria circular defects with a VSCM. After four weeks, histology, histomorphometry, quantitative backscattered electron imaging, and microcomputed tomography were performed. We report that the overall pattern of mineralization inside the VSCM was heterogeneous. Histology revealed, apart from the characteristic woven bone formation, areas of round-shaped hypertrophic chondrocyte-like cells surrounded by a mineralized extracellular matrix. Quantitative backscattered electron imaging confirmed the heterogenous mineralization occurring within the VSCM. Histomorphometry found new bone to be 0.7 mm2 (0.01 min; 2.4 max), similar to the chondrogenic mineralized extracellular matrix with 0.7 mm2 (0.0 min; 4.2 max). Microcomputed tomography showed the overall mineralized tissue in the defect to be 1.6 mm3 (min 0.0; max 13.3). These findings suggest that in a rat cranial defect, VSCM has a limited and heterogeneous capacity to support intramembranous bone formation but may allow the formation of bone via the endochondral route.


Sign in / Sign up

Export Citation Format

Share Document