Abstract 50: HTI-1511, a novel anti-EGFR-ADC, overcomes mutation resistance and demonstrates significant activity against multiple tumor types in preclinical studies

Author(s):  
Jesse D. Bahn ◽  
Feng Gao ◽  
Lei Huang ◽  
Barbara Blouw ◽  
Chunmei Zhao ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leylah M. Drusbosky ◽  
Estelamari Rodriguez ◽  
Richa Dawar ◽  
Chukwuemeka V. Ikpeazu

AbstractThe recent approvals by the Food and Drug Administration several tumor-agnostic drugs have resulted in a paradigm shift in cancer treatment from an organ/histology-specific strategy to biomarker-guided approaches. RET gene fusions are oncogenic drivers in multiple tumor types and are known to occur in 1–2% of non-squamous NSCLC patients. RET gene fusions give rise to chimeric, cytosolic proteins with constitutively active RET kinase domain. Standard therapeutic regimens provide limited benefit for NSCLC patients with RET fusion-positive tumors, and the outcomes with immunotherapy in the these patients are generally poor. Selpercatinib (LOXO-292) and pralsetinib (BLU-667) are potent and selective inhibitors that target RET alterations, including fusions and mutations, irrespective of the tissue of origin. Recently, the results from the LIBRETTO-001 and ARROW clinical trials demonstrated significant clinical benefits with selpercatinib and pralsetinib respectively, in NSCLC patients with RET gene fusions, with tolerable toxicity profiles. These studies also demonstrated that these RET-TKIs crossed the blood brain barrier with significant activity. As has been observed with other TKIs, the emergence of acquired resistance may limit long-term efficacy of these agents. Therefore, understanding the mechanisms of resistance is necessary for the development of strategies to overcome them.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ruijuan Du ◽  
Chuntian Huang ◽  
Kangdong Liu ◽  
Xiang Li ◽  
Zigang Dong

AbstractAurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678 ◽  
Author(s):  
Adrien Procureur ◽  
Audrey Simonaggio ◽  
Jean-Emmanuel Bibault ◽  
Stéphane Oudard ◽  
Yann-Alexandre Vano

The immunogenic cell death (ICD) is defined as a regulated cell death able to induce an adaptive immunity. It depends on different parameters including sufficient antigenicity, adjuvanticity and favorable microenvironment conditions. Radiation therapy (RT), a pillar of modern cancer treatment, is being used in many tumor types in curative, (neo) adjuvant, as well as metastatic settings. The anti-tumor effects of RT have been traditionally attributed to the mitotic cell death resulting from the DNA damages triggered by the release of reactive oxygen species. Recent evidence suggests that RT may also exert its anti-tumor effect by recruiting tumor-specific immunity. RT is able to induce the release of tumor antigens, to act as an immune adjuvant and thus to synergize with the anti-tumor immunity. The advent of new efficient immunotherapeutic agents, such as immune checkpoint inhibitors (ICI), in multiple tumor types sheds new light on the opportunity of combining RT and ICI. Here, we will describe the biological and radiobiological rationale of the RT-induced ICD. We will then focus on the interest to combine RT and ICI, from bench to bedside, and summarize the clinical data existing with this combination. Finally, RT technical adaptations to optimize the ICD induction will be discussed.


2020 ◽  
Vol 22 (1) ◽  
pp. 190
Author(s):  
Fulvio Borella ◽  
Mario Preti ◽  
Luca Bertero ◽  
Giammarco Collemi ◽  
Isabella Castellano ◽  
...  

Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.


Author(s):  
Andrew S. Niekamp ◽  
Govindarajan Narayanan ◽  
Brian J. Schiro ◽  
Constantino Pena ◽  
Alex Powell ◽  
...  

AbstractRadioembolization has become a widespread treatment modality for both primary and metastatic hepatic malignancies. Although the majority of data and indication for yttrium-90 radioembolization have been for hepatocellular carcinoma and metastatic colorectal cancer, radioembolization with yttrium-90 has rapidly expanded into the treatment options for multiple tumor types with metastases to the liver. This article reviews the clinical data and expanding utilization of radioembolization for rare metastatic diseases with an emphasis on efficacy and safety.


Oncotarget ◽  
2015 ◽  
Vol 6 (6) ◽  
pp. 3553-3562 ◽  
Author(s):  
Marco Fiorillo ◽  
Andrea F. Verre ◽  
Maria Iliut ◽  
Maria Peiris-Pagés ◽  
Bela Ozsvari ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Paola Brescia ◽  
Cristina Richichi ◽  
Giuliana Pelicci

Cancer stem cells (CSCs) were isolated in multiple tumor types, including human glioblastomas, and although the presence of surface markers selectively expressed on CSCs can be used to isolate them, no marker/pattern of markers are sufficiently robust to definitively identify stem cells in tumors. Several markers were evaluated for their prognostic value with promising early results, however none of them was proven to be clinically useful in large-scale studies, leading to outstanding efforts to identify new markers. Given the heterogeneity of human glioblastomas further investigations are necessary to identify both cancer stem cell-specific markers and the molecular mechanisms sustaining the tumorigenic potential of these cells to develop tailored treatments. Markers for glioblastoma stem cells such as CD133, CD15, integrin-α6, L1CAM might be informative to identify these cells but cannot be conclusively linked to a stem cell phenotype. Overlap of expression, functional state and morphology of different subpopulations lead to carefully consider the techniques employed so far to isolate these cells. Due to a dearth of methods and markers reliably identifying the candidate cancer stem cells, the isolation/enrichment of cancer stem cells to be therapeutically targeted remains a major challenge.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiakang Jin ◽  
Jinti Lin ◽  
Ankai Xu ◽  
Jianan Lou ◽  
Chao Qian ◽  
...  

Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.


Sign in / Sign up

Export Citation Format

Share Document