Abstract 6639: SRF617, a potent enzymatic inhibitor of CD39, demonstrates single-agent activity and cooperates with various cancer therapies in both solid tumor and hematologic malignancies

Author(s):  
Sonia G. Das ◽  
Austin Dulak ◽  
Gege Tan ◽  
Marc Johnson ◽  
Tauqeer H. Zaidi ◽  
...  
2019 ◽  
Author(s):  
Daniel Sun ◽  
Soumya Poddar ◽  
Roy D. Pan ◽  
Juno Van Valkenburgh ◽  
Ethan Rosser ◽  
...  

The lead compound, an ⍺-N-heterocyclic carboxaldehyde thiosemicarbazone <b>HCT-13</b>, was highly potent against a panel of pancreatic, small cell lung carcinoma, and prostate cancer models, with IC<sub>90</sub> values in the low-to-mid nanomolar range.<b> </b>We show that the cytotoxicity of <b>HCT-13</b> is copper-dependent, that it acts as a copper ionophore, induces production of reactive oxygen species (ROS), and promotes mitochondrial dysfunction and S-phase arrest. Lastly, DNA damage response/replication stress response (DDR/RSR) pathways, specifically Ataxia-Telangiectasia Mutated (ATM) and Rad3-related protein kinase (ATR), were identified as actionable adaptive resistance mechanisms following <b>HCT-13 </b>treatment. Taken together, <b>HCT-13 </b>is potent against solid tumor models and warrants <i>in vivo</i> evaluation against aggressive tumor models, either as a single agent or as part of a combination therapy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1333
Author(s):  
Jana Gregorova ◽  
Petra Vychytilova-Faltejskova ◽  
Sabina Sevcikova

MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a posttranscriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1418-1418 ◽  
Author(s):  
Khendi T White ◽  
Anita Aggarwal ◽  
Marisanta Napolitano ◽  
Craig M. Kessler

Abstract Abstract 1418 Introduction: Acquired hemophilia (AH), a rare autoimmune disorder primarily of adults, is typically characterized by the presence of IgG oligoclonal antibodies to the clotting factor VIII protein (FVIII). About 10–15% of patients with AH have an underlying malignancy, but the etiologic relationship of cancer to formation of FVIII inhibitor is yet to be determined. To date, there have been no published, comprehensive reviews on the efficacy of various treatments for AH in the context of either solid tumor or hematologic malignancies. Therefore, we have systematically reviewed 86 patients with cancer-associated AH from our own cancer center and from the published literature. Methods: The literature search for this systematic review was performed using PubMed MEDLINE, Ovid MEDLINE, CINAHL, SCOPUS, and Embase. The search terms included various combinations of “acquired”, “cancer”, “factor VIII”, “hemophilia A”, “autoantibodies”, and “treatment.” The major criterion for inclusion was a diagnosis of cancer before or within three months after appearance of acquired inhibitor. Both solid and hematologic malignancies were included. Any report that did not document a FVIII inhibitor titer and/or FVIII activity was excluded. Success in inhibitor eradication has been defined as undetectable inhibitor and normalization of FVIII activity. All articles with an abstract in English published in the period from January 1985 to July 2010 were considered. Results: 86 cases of AH were collected and analyzed according to classification of cancer and efficacy of treatments for inhibitor and malignancy. The mean age is 67.8 years. 74% of patients were of Caucasian or European background, 8% were of Asian descent, and 2% were of African descent. AH was associated with solid malignancy in 50 cases (58%) and hematologic malignancy in 36 cases (42%). Among all AH cases, 15% and 14% of patients had lymphoma and CLL, respectively. Of the solid tumors, lung and prostate carcinoma (each 12%) occurred with the greatest frequency followed by colorectal (9%) and bladder (5%). Not all patients had treatment for their underlying cancer, bleeding and/or inhibitor. Complete eradication (CE) of inhibitor was achieved in 48 patients (56%), no eradication (NE) in 22 (26%), and 16 (18%) had unknown status. Of the 73% of patients with CE, 22 were treated with chemotherapy, 10 were treated with surgery, and 1 with both (Table 1). In this series, there was a trend towards successful inhibitor eradication with treatment of B-cell lymphoproliferative malignancies as well as lung and prostate cancer. Long term survival was best achieved when successful CE and treatment of underlying malignancy occurred concurrently. Conclusions: This literature and case series suggests that AH is associated almost equally with hematological and solid tumor malignancies. These retrospective data suggest that treatment of the cancer with chemotherapy or surgery is very likely to induce eradication of the autoantibody inhibitor. There is a trend for increased success in CE in B-cell lymphoproliferative malignancies and selected solid tumors. Long term survival appears dependent on concurrent CE and treatment of the cancer. Disclosures: Kessler: Grifols S.A.: Research Funding; Baxter-Immuno: Research Funding; NovoNordisk: Research Funding.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4945
Author(s):  
Cristiane de Sá de Sá Ferreira-Facio ◽  
Vitor Botafogo ◽  
Patrícia Mello Ferrão ◽  
Maria Clara Canellas ◽  
Cristiane B. Milito ◽  
...  

Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination—solid tumor orientation tube, STOT—for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design–test–evaluate–redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/numyogenin/CD4-EpCAM/CD56/GD2/smCD3-CD19/cyCD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained. In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45− CD56++ non-hematopoietic solid tumors: 13/13 (GD2++ numyogenin− CD271−/+ nuMyoD1− CD99− EpCAM−) neuroblastoma samples, 5/5 (GD2− numyogenin++ CD271++ nuMyoD1++ CD99−/+ EpCAM−) rhabdomyosarcomas, 2/2 (GD2−/+ numyogenin− CD271+ nuMyoD1− CD99+ EpCAM−) Ewing sarcoma family of tumors, and 7/7 (GD2− numyogenin− CD271+ nuMyoD1− CD99− EpCAM+) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2265-2274 ◽  
Author(s):  
Stefanie Sauer ◽  
Paola A. Erba ◽  
Mario Petrini ◽  
Andreas Menrad ◽  
Leonardo Giovannoni ◽  
...  

Abstract Current treatment of hematologic malignancies involves rather unspecific chemotherapy, frequently resulting in severe adverse events. Thus, modern clinical research focuses on compounds able to discriminate malignant from normal tissues. Being expressed in newly formed blood vessels of solid cancers but not in normal mature tissues, the extradomain B of fibronectin (ED-B FN) is a promising target for selective cancer therapies. Using immunohistology with a new epitope retrieval technique for paraffin-embedded tissues, ED-B FN expression was found in biopsies from more than 200 Hodgkin and non-Hodgkin lymphoma patients of nearly all entities, and in patients with myeloproliferative diseases. ED-B FN expression was nearly absent in normal lymph nodes (n = 10) and bone marrow biopsies (n = 9). The extent of vascular ED-B FN expression in lymphoma tissues was positively correlated with grade of malignancy. ED-B FN expression was enhanced in lymph nodes with severe lymphadenopathy and in some hyperplastic tonsils. The in vivo accessibility of ED-B FN was confirmed in 3 lymphoma patients, in whom the lymphoma lesions were visualized on scintigraphy with 131I-labeled L19 small immunoprotein (131I-L19SIP). In 2 relapsed Hodgkin lymphoma patients131I-L19SIP radioimmunotherapy induced a sustained partial response, qualifying ED-B FN as a promising target for antibody-based lymphoma therapies.


2020 ◽  
Vol 2020 ◽  
pp. 1-3
Author(s):  
Jessica Tran ◽  
Auris Huen ◽  
Madeleine Duvic

Patients with mycosis fungoides have an increased risk for additional malignancies, particularly hematologic malignancies. Of the malignancies that have been associated with mycosis fungoides, renal cell carcinoma and other solid tumor malignancies have not been studied extensively. In this case series, we describe three mycosis fungoides patients who were diagnosed with clear cell renal cell carcinoma and discuss the potential pathophysiology underlying this association.


2020 ◽  
Vol 117 (48) ◽  
pp. 30670-30678
Author(s):  
Olivera Grbovic-Huezo ◽  
Kenneth L. Pitter ◽  
Nicolas Lecomte ◽  
Joseph Saglimbeni ◽  
Gokce Askan ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, which limits surgical options and portends a dismal prognosis. Current oncologic PDAC therapies confer marginal benefit and, thus, a significant unmet clinical need exists for new therapeutic strategies. To identify effective PDAC therapies, we leveraged a syngeneic orthotopic PDAC transplant mouse model to perform a large-scale, in vivo screen of 16 single-agent and 41 two-drug targeted therapy combinations in mice. Among 57 drug conditions screened, combined inhibition of heat shock protein (Hsp)-90 and MEK was found to produce robust suppression of tumor growth, leading to an 80% increase in the survival of PDAC-bearing mice with no significant toxicity. Mechanistically, we observed that single-agent MEK inhibition led to compensatory activation of resistance pathways, including components of the PI3K/AKT/mTOR signaling axis, which was overcome with the addition of HSP90 inhibition. The combination of HSP90(i) + MEK(i) was also active in vitro in established human PDAC cell lines and in vivo in patient-derived organoid PDAC transplant models. These findings encourage the clinical development of HSP90(i) + MEK(i) combination therapy and highlight the power of clinically relevant in vivo model systems for identifying cancer therapies.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 402 ◽  
Author(s):  
Christina Buchanan ◽  
Kate Lee ◽  
Peter Shepherd

The hyper-activation of the phosphoinositide (PI) 3-kinase signaling pathway is a hallmark of many cancers and overgrowth syndromes, and as a result, there has been intense interest in the development of drugs that target the various isoforms of PI 3-kinase. Given the key role PI 3-kinases play in many normal cell functions, there is significant potential for the disruption of essential cellular functions by PI 3-kinase inhibitors in normal tissues; so-called on-target drug toxicity. It is, therefore, no surprise that progress within the clinical development of PI 3-kinase inhibitors as single-agent anti-cancer therapies has been slowed by the difficulty of identifying a therapeutic window. The aim of this review is to place the cellular, tissue and whole-body effects of PI 3-kinase inhibition in the context of understanding the potential for dose limiting on-target toxicities and to introduce possible strategies to overcome these.


Author(s):  
Kimberly Levinson ◽  
Oliver Dorigo ◽  
Krista Rubin ◽  
Kathleen Moore

Immunotherapy, mainly in the form of immune checkpoint inhibitors (ICIs), has been transformative in both solid tumor and hematologic malignancies. Patients with previously terminal illnesses have experienced profound responses of great durability with these agents, fueling excitement among patients and providers regarding their use. Unfortunately, the gains seen in some solid tumors have not been replicated in a large percentage of patients with gynecologic cancer. This review focuses on the clinical benefits seen to date, toxicities and management when using ICIs, ways to improve prediction of who should receive immunotherapy, and a discussion of next-generation immunotherapy with cellular therapeutics and how these might relate to gynecologic cancers.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 286-286 ◽  
Author(s):  
Constantine S. Mitsiades ◽  
Cecile Rouleau ◽  
Krishna Menon ◽  
Beverly Teicher ◽  
Massimo Iacobelli ◽  
...  

Abstract Introduction: Defibrotide (DF) is a polydisperse oligonucleotide with anti-thrombotic, thrombolytic, anti-ischemic, and anti-adhesive properties, which selectively targets the microvasculature and has minimal hemorrhagic risk. DF is an effective treatment for veno-occlusive disease (VOD), an important regimen-related toxicity in stem cell transplantation characterized by endothelial cell injury. DF also augments stem cell mobilization by modulating adhesion in vivo. Because of its cytoprotective effect on the endothelium, we specifically investigated whether DF protects tumor cells from cytotoxic anti-tumor agents. Further, because of its broad anti-adhesive properties, we evaluated whether DF modulates the interaction of MM cells with bone marrow stromal cells (BMSCs), which confers growth, survival and drug resistance in the BM milieu. Methods: In vitro studies in isogenic dexamethasone (Dex)-sensitive and resistant MM cell lines (MM-1S and MM1R, respectively) showed that DF does not attenuate the sensitivity of MM cells to Dex, the proteasome inhibitor bortezomib (PS-341), melphalan (MEL), vinca alkaloids (vincristine, vinblastine), taxanes (paclitaxel) or platinum (cisplatin), but does decrease their sensitivity to doxorubicin. These selective effects in vitro of DF in protecting tumor cells against doxorubicin and modestly sensitizing MM cells to platinum was also confirmed in solid tumor breast (MCF-7) and colon (HT-29) carcinoma cell lines. Although DF had minimal in vitro inhibitory effect on MM or solid tumor cell growth in vitro, it showed in vivo activity as a single agent and enhanced the responsiveness of MM tumors to cytotoxic chemotherapeutics, such as MEL or cyclophosphamide, in human MM xenografts in SCID/NOD mice. The in vivo single-agent activity and chemosensitizing properties of DF, coupled with its lack of major in vitro activity, suggested that DF may not directly target tumor cells, but rather modulate tumor cell interaction with BMSCs. In an ex vivo model of co-culture of primary MM tumor cells with BMSCs (which protects MM cells against conventional chemotherapy), DF alone had a only modest effect on tumor cell viability, but it significantly enhanced MM cell sensitivity to cytotoxic chemotherapy (e.g. MEL), suggesting that a major component of the biological effects of DF may be attributable not to direct targeting of tumor cells, but to modulation of the interactions that tumor cells develop with the local stromal milieu. Conclusion: Our studies show that DF mediates in vivo anti-MM activity by abrogating interactions of MM cells with their BM milieu, thereby enhancing sensitivity and overcoming resistance to conventional chemotherapy. These data support future clinical trials of DF, in combination with both conventional and novel therapies, to improve patient outcome in MM.


Sign in / Sign up

Export Citation Format

Share Document