scholarly journals Salt-Inducible Kinase 1 (SIK1) is Induced by Alcohol and Suppresses Microglia Inflammation via NF-κB Signaling

2018 ◽  
Vol 47 (4) ◽  
pp. 1411-1421 ◽  
Author(s):  
Yu Zhang ◽  
Weida Gao ◽  
Kongbin Yang ◽  
Haiquan Tao ◽  
Haicheng Yang

Background/Aims: Alcohol consumption has been shown to cause neuroinflammation and increase a variety of immune-related signaling processes. Microglia are a crucial part of alcohol-induced neuroinflammation and undergo apoptosis. Even though the importance of these inflammatory processes in the effects of alcohol-related neurodegeneration have been established, the mechanism of alcohol-induced microglia apoptosis is unknown. In prior research, we discovered that alcohol increases expression of salt-inducible kinase 1 (SIK1) in rodent brain tissue. In this study, we sought to determine what role SIK1 expression plays in alcohol-induced neuroinflammation as well as whether and by what mechanism it regulates microglia apoptosis. Methods: Adult C57BL/6 mice were divided into four groups and for 3 weeks treated with either 0%, 5%, 10%, or 15% alcohol during 3 hour periods. The mice were sacrificed and their brains excised for analysis. Additionally, primary microglia were isolated from neonatal mice. SIK1 expression in alcohol-treated brain tissue and microglia was analyzed via RT-PCR and western blotting. TUNEL staining, caspase-3, and caspase-9 activity assays were performed to evaluate microglial apoptosis. Cell fluorescence staining and NF-κB luciferase activity assays were used to evaluate the effects of SIK1 expression on the NF-κB signaling pathway. Results: SIK1 expression was increased in the brains of mice that consumed alcohol, and this effect was seen in mouse primary microglia. SIK1 knockdown in microglia increased alcohol-induced apoptosis in these cells. Furthermore, SIK1 reduced NF-κB signaling pathway factors, and SIK1 knockdown in microglia promoted alcohol-induced NF-κB activity. TUNEL staining, caspase-3, and caspase-9 activity assays consistently revealed that alcohol-induced microglial apoptosis was inhibited by depletion of p65. Finally, we determined that NF-κB signaling is required for alcohol-induced, SIK1-mediated apoptosis in microglia. Conclusion: This study establishes for the first time not only that SIK1 is crucial to regulating alcohol-induced microglial apoptosis, but also that the NF-κB signaling pathway is required for its activity. Overall, our results help elucidate mechanisms of alcohol-induced neuroinflammation.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yan Gong ◽  
Shan Luo ◽  
Ping Fan ◽  
Huili Zhu ◽  
Yujing Li ◽  
...  

Abstract Background It is reported that growth hormone (GH) can alleviate oxidative stress (OS) induced apoptosis in some types of cells by activating the PI3K/Akt signaling pathway. This study investigated the role and underlying mechanism of GH in OS and apoptosis in granulosa cells (GCs) of patients with polycystic ovary syndrome (PCOS). Methods Primary GCs were collected from patients with and without PCOS (controls, n = 32) during oocyte retrieval. The patients with PCOS were randomly assigned to take GH treatment (PCOS-GH, n = 30) or without GH treatment (PCOS-C, n = 31). Reactive oxygen species (ROS) level was determined by spectrophotometry and fluorescence microscopy. GC apoptosis and mitochondrial membrane potential (MMP) were detected by Annexin V-FITC/PI double-staining and JC-1 staining, respectively (flow cytometry). The expression of apoptosis-related genes and proteins involved in PI3K/Akt signaling was determined by quantitative reverse-transcription polymerase chain reaction and western blotting, while active caspase-9 and caspase-3 levels of GCs were determined by enzyme-linked immunosorbent assay. Results Our study found that in GCs of the PCOS-GH group, the ROS levels and apoptotic rates were significantly decreased, whereas MMP was significantly increased when compared to those in the PCOS-C group (P < 0.05). The mRNA levels of FOXO1, Bax, caspase-9, and caspase-3 were significantly decreased, whereas Bcl-2 was increased in GCs of the PCOS-GH group than those in the PCOS-C group (P < 0.05). The protein levels of FOXO1, Bax, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 were decreased, whereas p-PI3K/PI3K, p-Akt/Akt, p-FOXO1 and Bcl-2 were increased in GCs of the PCOS-GH group, compared with those in the PCOS-C group (P < 0.05). Conclusion OS induced apoptosis and downregulated the PI3K/Akt signaling pathway in patients with PCOS. GH could alleviate apoptosis and activate the PI3K/Akt signaling pathway. Clinical trial registration number Chinese Clinical Trial Registry. ChiCTR1800019437. Prospectively registered on October 20, 2018.


2021 ◽  
Author(s):  
Huang Xiao-Su ◽  
Yan Pei ◽  
Zhou Chang ◽  
Xu Qiuxiang ◽  
Li Ming ◽  
...  

Abstract Purpose α-pinene was a chemical compound which was extracted from pine needles oil, and it exerted effects on various diseases. However, the effect of α-pinene on cervical cancer had not been reported. The goal of this study was to explore the anti-tumor role of α-pinene. Methods Methyl thiazolyl tetrazolium (MTT) method was used to detect cytotoxicity of α-pinene. Flow cytometry was used to quantify the cell cycle and apoptosis. TUNEL staining was also performed for the revalidation of apoptosis. QRT-PCR and western blot was implemented to detect the expression levels of apoptosis genes and miR-34a-5p. Tumor-bearing nude mouse models was adopted to assess the anti-tumor action of α-pinene in vivo. Results The results displayed α-pinene restrained proliferation of Hela cells in G1 phase and induced Hela cell apoptosis, which was related to up-regulating expressions of Bax, Bid, Caspase-9, Caspase-3, miR-34a-5p and down-regulating the expression of Bcl-2. Afterwards, α-Pinene could regulate miR-34a-5p/Bcl-2 pathway. Furthermore, α-pinene treatment also induced apoptosis in xenografts tumor models. The fluorescence intensity of Bax, Bid, Caspase-9, Caspase-3 increased and fluorescence intensity of Bcl-2 decreased. Conclusions Our research demonstrated α-pinene could restrain the development of cervical cancer growth, and it might be an effective chemical compound for therapy of cervical cancer.


2020 ◽  
Author(s):  
Yan Gong ◽  
Shan Luo ◽  
Ping Fan ◽  
Huili Zhu ◽  
Yujing Li ◽  
...  

Abstract Background: Growth hormone (GH) can reduce oxidative stress (OS) induced apoptosis in some types of cells by activating the PI3K/Akt signaling pathway. This study investigated the role and underlying mechanism of GH in OS and apoptosis in GCs of patients with polycystic ovary syndrome (PCOS). Methods: Primary GCs were collected from patients with and without PCOS (controls, n = 32) during oocyte retrieval. The patients with PCOS were randomly assigned to receive treatment with GH (PCOS-GH, n = 30) or without GH (PCOS-C, n = 31). Reactive oxygen species (ROS) level was determined by spectrophotometry and fluorescence microscopy. GC apoptosis and mitochondrial membrane potential (MMP) were detected by Annexin V-FITC/PI double-staining and JC-1 staining, respectively (flow cytometry). The expression of apoptosis-related genes and proteins involved in PI3K/Akt signaling was determined by quantitative reverse-transcription polymerase chain reaction and western blotting, while active caspase-9 and caspase-3 levels were determined by enzyme-linked immunosorbent assay. Result(s): The present study found that compared with those in the non-PCOS and PCOS-GH groups, the ROS levels and apoptotic rates were significantly increased, whereas MMP was significantly decreased in the PCOS-C group GCs (P < 0.05). Compared with those in non-PCOS and PCOS-GH groups, mRNA levels of FOXO1, Bax, caspase-9, and caspase-3 were significantly increased, whereas Bcl-2 was decreased in the GCs of the PCOS-C group (P < 0.05). The protein levels of FOXO1, Bax, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 were increased, whereas p-PI3K/PI3K, p-Akt/Akt, p-FOXO1 and Bcl-2 were decreased in the GCs of the PCOS-C group, compared with those in the non-PCOS and PCOS-GH groups (P < 0.05). Conclusion: OS induced apoptosis and inactivated the PI3K/Akt signaling pathway in patients with PCOS. GH could improve apoptosis and activate the PI3K/Akt signaling pathway.Clinical Trial Registration Number: Chinese Clinical Trial Registry (www.chictr.org.cn/index.aspx). ChiCTR1800019437. Prospectively registered on October 20, 2018, http://www.chictr.org.cn/edit.aspx?pid=28663&htm= 4


2020 ◽  
Vol 21 (8) ◽  
pp. 734-740 ◽  
Author(s):  
Shou-di He ◽  
Ning Tan ◽  
Chen-xia Sun ◽  
Kang-han Liao ◽  
Hui-jun Zhu ◽  
...  

Background: Melittin, the major medicinal component of honeybee venom, exerts antiinflammatory, analgesic, and anti-arthritic effects in patients with Rheumatoid Arthritis (RA). RA is an inflammatory autoimmune joint disease that leads to irreversible joint destruction and functional loss. Fibroblast-Like Synoviocytes (FLS) are dominant, special mesenchymal cells characterized by the structure of the synovial intima, playing a crucial role in both the initiation and progression of RA. Objective: In this study, we evaluated the effects of melittin on the viability and apoptosis of FLS isolated from patients with RA. Methods: Cell viability was determined using CCK-8 assays; apoptosis was evaluated by flow cytometry, and the expression levels of apoptosis-related proteins (caspase-3, caspase-9, BAX, and Bcl-2) were also determined. To explore whether melittin alters inflammatory processes in RA-FLS, IL-1β levels were determined using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we performed GFP-LC3 punctate fluorescence dot assays and western blotting (for LC3, ATG5, p62, and Beclin 1) to assess autophagy in RA-FLS. Results: Our results show that melittin can significantly impair viability, promote apoptosis and autophagy, and inhibit IL-1β secretion in RA-FLS. Conclusion: Melittin may be useful in preventing damage to the joints during accidental local stimulation.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Nabilah Muhammad Nadzri ◽  
Ahmad Bustamam Abdul ◽  
Mohd Aspollah Sukari ◽  
Siddig Ibrahim Abdelwahab ◽  
Eltayeb E. M. Eid ◽  
...  

Zerumbone (ZER) isolated fromZingiber zerumbetwas previously encapsulated with hydroxypropyl-β-cyclodextrin (HPβCD) to enhance ZER’s solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HPβCD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HPβCD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HPβCD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 260 ◽  
Author(s):  
Xinling Wang ◽  
Chengmin Li ◽  
Yiru Wang ◽  
Lian Li ◽  
Zhaoyu Han ◽  
...  

Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.


2012 ◽  
Vol 303 (1) ◽  
pp. E132-E143 ◽  
Author(s):  
Fang Zhao ◽  
Fengjie Huang ◽  
Mengxiong Tang ◽  
Xiaoming Li ◽  
Nina Zhang ◽  
...  

We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.


Sign in / Sign up

Export Citation Format

Share Document