Zuoguiwan Ameliorates Cognitive Deficits and Neuro-Inflammation in Streptozotocin-Induced Alzheimer’s Disease Rats

2021 ◽  
pp. 1-7
Author(s):  
Hong Liu ◽  
Lili Zhong ◽  
Qiaomei Dai ◽  
Jing Yang ◽  
Yuwei Zhang ◽  
...  

<b><i>Introduction:</i></b> Alzheimer’s disease is the most popular neurodegenerative disorder with no effective drugs to stop the progression. Zuoguiwan (ZGW), a traditional Chinese herbal medicine, has been applied in many diseases. Our study aimed to detect the function and mechanisms of ZGW in Alzheimer’s disease (AD). <b><i>Methods:</i></b> The rat models of AD were established by streptozotocin (STZ), and the function of ZGW on cognitive dysfunction was measured with the Morris water maze test. The concentration of pro-inflammatory mediators was accessed by enzyme-linked immunosorbent assay. The relative mRNA expression of ERβ was detected by real-time quantitative PCR. <b><i>Results:</i></b> The treatment with ZGW could suppress the cognitive impairment by the findings of escape latency and time spent in the target quadrant and the increased concentration of IL-1β, IL-6, and TNF-α induced by STZ. STZ might repress the mRNA levels of ERβ, and ZGW management weakened the declined mRNA expression of ERβ. ZGW might play a protective role in AD rats against the injury of STZ on cognition and neuro-inflammation by improving the mRNA expression of ERβ. <b><i>Conclusion:</i></b> The results indicated that ZGW might be a novel therapeutic strategy to slow the process of AD by modulating ERβ.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fanhui Meng ◽  
Jun Li ◽  
Yanqiu Rao ◽  
Wenjun Wang ◽  
Yan Fu

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, and the few drugs that are currently available only treat the symptoms. Traditional medicine or phytotherapy has been shown to protect against AD. In our previous studies, Gengnianchun (GNC), a traditional Chinese medicine formula with a prolongevity effect, protected against Aβ-induced cytotoxicity in pheochromocytoma cells (PC-12 cells) and hippocampal cells. Here, we investigated the effects and possible mechanisms by which GNC protected against Aβtoxicity using transgenicCaenorhabditis elegansCL4176. Our results showed that GNC effectively delayed the Aβtoxicity-triggered body paralysis of CL4176 worms. GNC decreased Aβby reducing AβmRNA levels. Moreover, GNC significantly reduced reactive oxygen species in the AD model worms compared with the controls. In addition, GNC upregulated the daf-16, sod-3, hsp-16.2 genes, and enhanced DAF-16 translocation from the cytoplasm to the nuclei under oxidative stress conditions. GNC treatment ofC. elegansstrains lacking DAF-16 did not affect the paralysis phenotype. Taken together, these findings suggest that GNC could protect against Aβ-induced toxicity via the DAF-16 pathway inC. elegans. Further studies are required to analyze its effectiveness in more complex animals.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Rachelle Balez ◽  
Lezanne Ooi

Alzheimer’s disease (AD) is a neurodegenerative disorder involving the loss of neurons in the brain which leads to progressive memory loss and behavioral changes. To date, there are only limited medications for AD and no known cure. Nitric oxide (NO) has long been considered part of the neurotoxic insult caused by neuroinflammation in the Alzheimer’s brain. However, focusing on early developments, prior to the appearance of cognitive symptoms, is changing that perception. This has highlighted a compensatory, neuroprotective role for NO that protects synapses by increasing neuronal excitability. A potential mechanism for augmentation of excitability by NO is via modulation of voltage-gated potassium channel activity (Kv7 and Kv2). Identification of the ionic mechanisms and signaling pathways that mediate this protection is an important next step for the field. Harnessing the protective role of NO and related signaling pathways could provide a therapeutic avenue that prevents synapse loss early in disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tingting Pi ◽  
Shenjiao Wei ◽  
Yongxuan Jiang ◽  
Jing-Shan Shi

Background. Excessive or insufficient intake of methionine (Met) causes neuronal dysfunction, neurodegeneration, cerebrovascular dysfunction, vascular leakage, and short-term memory loss, which result in the occurrence of Alzheimer’s disease- (AD-) like symptoms. Objective. To determine the relationship between high methionine diets (HMD) induced AD-like symptoms and 5-methylcytosine (5-mC) level. Methods. C57BL/6J mice were randomly divided into two groups: the control group (Maintain diets) and the model group (2% HMD). Mice were fed with 2% HMD for 9 weeks. Animals were weighed and food intake was recorded weekly. Open field test, nesting ability test, Y maze test, new object recognition test, and Morris water maze test were used to detect the motor, learning, and memory ability. Hematoxylin-eosin (HE) staining was used to observe the damage of cells in hippocampus and cortex. Immunofluorescence (IF) staining was used to detect the expression and distribution of amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and 5-methylcytosine (5-mC) in hippocampus and cortex. Western blotting (WB) was used to determine the expression of Aβ and DNA methyltransferases- (DNMTs-) related proteins in the cortex. Enzyme-linked immunosorbent assay (ELISA) was performed to detect homocysteine (Hcy) level (ELISA). Results. Feeding of HMD decreased the body weight and food intake of mice. Behavioral testing revealed that HMD caused learning, memory, and motor ability impairment in the mice. HE staining results showed that HMD feeding caused damage of hippocampal and cortical neurons, along with disordered cell arrangement, and loss of neurons. Furthermore, HMD increased the contents of Aβ1-40, Aβ1-42, and 5-mC in the hippocampus and cortex. WB results showed that HMD increased the expression of Aβ production-related proteins, such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1), and decreased the expression of Aβ metabolism-related protein in the cortex, including insulin-degrading enzyme (IDE) and neprilysin (NEP). Additionally, the decreased expression of DNA methyltransferase1 (DNMT1) was observed in HMD-treated mice, but there was no significant change of DNMT3a level. ELISA results showed that HMD increased the levels of Hcy in serum. Conclusion. Our result suggested that the HMD can cause neurotoxicity, leading to AD-like symptoms in mice, which may be related to 5-mC elevated.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Fatemeh Heidari ◽  
George Ansstas ◽  
Farzam Ajamian

<b><i>Background/Aims:</i></b> In despite of conflicting results among different ethnic groups, the rs3865444 of CD33 gene has previously been identified as a risk factor for late-onset Alzheimer’s disease (LOAD).This study was aimed to evaluate the association between rs3865444 SNP with LOAD occurrence, and to investigate whether CD33 mRNA expression will change in the leukocytes of peripheral blood in LOAD patients. <b><i>Methods:</i></b> The rs3865444 polymorphism was genotyped in 233 LOAD and 238 control subjects using the Tetra-ARMS-PCR method. CD33 mRNAs expression in leukocytes were assessed and analyzed using the real-time qPCR method. We used in silico approach to analyze potential effects imparted by rs3865444 polymorphism in LOAD pathogenesis. <b><i>Results:</i></b> Our results show a significant increase in CD33 mRNA expression levels in white blood cells of LOAD patients, however, the association between CD33 rs3865444 polymorphism and LOAD was found to be not significant. We also noticed that LOAD patients with the C/A genotype had higher CD33 mRNA levels in their peripheral blood than those of the control group. <b><i>Conclusions:</i></b> rs3865444, located upstream of the 5′CD33 coding region, might positively influence CD33 mRNAs expression in leukocytes of LOAD versus healthy people. This is likely to happen through interfering rs3865444 (C) with the functional activity of several other transcription factors given that rs3865444 is in linkage disequilibrium with other functional polymorphisms in this coding region according to an in silico study. We propose that CD33 mRNAs elevation in peripheral immune cells – as a potential biomarker in LOAD – is related to peripheral immune system impairment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renuka Prasad ◽  
Hwajin Jung ◽  
Anderson Tan ◽  
Yonghee Song ◽  
Sungho Moon ◽  
...  

AbstractAlzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and behavioral changes. Extracellular deposition of amyloid plaques (Aβ) and intracellular deposition of neurofibrillary tangles in neurons are the major pathogenicities of AD. However, drugs targeting these therapeutic targets are not effective. Therefore, novel targets for the treatment of AD urgently need to be identified. Expression of the mesoderm-specific transcript (Mest) is regulated by genomic imprinting, where only the paternal allele is active for transcription. We identified hypermethylation on the Mest promoter, which led to a reduction in Mest mRNA levels and activation of Wnt signaling in brain tissues of AD patients. Mest knockout (KO) using the CRIPSR/Cas9 system in mouse embryonic stem cells and P19 embryonic carcinoma cells leads to neuronal differentiation arrest. Depletion of Mest in primary hippocampal neurons via lentivirus expressing shMest or inducible KO system causes neurodegeneration. Notably, depletion of Mest in primary cortical neurons of rats leads to tau phosphorylation at the S199 and T231 sites. Overall, our data suggest that hypermethylation of the Mest promoter may cause or facilitate the progression of AD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bo Lei ◽  
Jiaxin Liu ◽  
Zhihui Yao ◽  
Yan Xiao ◽  
Xiaoling Zhang ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disorder that places a heavy burden on patients and society. Hippocampal neuronal loss is a hallmark of AD progression. Therefore, understanding the mechanism underlying hippocampal neuronal death would be of great importance for the diagnosis and treatment of AD. This study aimed to explore the molecular mechanism via which nuclear factor kappa β (NF-κB) promotes hippocampal neuronal oxidative stress and pyroptosis in AD. We collected serum samples from 101 healthy elderly people and 112 patients with AD at the Affiliated Hospital of Kunming University of Science and Technology between January 2017 and January 2020. Commercially available human hippocampal neurons (HHNs) were used to establish an AD model (AD-HHN) following Aβ25–35 treatment. The mRNA expression levels of NF-κB and pyroptosis markers [NLR family pyrin domain-containing 3, caspase-1, interleukin (IL)-1β, and interleukin-18] mRNA and the expression level of miR-146a-5p in the serum samples of patients with AD and AD-HHNs were determined by quantitative reverse transcription polymerase chain reaction. Oxidative stress indices (reactive oxygen species, malondialdehyde, nicotinamide adenine dinucleotide phosphate, superoxide dismutase, glutathione, and catalase) were measured by Enzyme-Linked Immunosorbent Assay (ELISA). The expression of proteins [NF-κB, TP53-induced glycolysis and apoptosis regulator (TIGAR), and pyroptosis markers] was tested by western blotting. The relationship between miR-146a-5p and TIGAR was investigated using a dual luciferase reporter gene assay. We found that NF-κB and miR-146a-5p were highly expressed, while TIGAR was low expressed in patients with AD and AD-HHNs. In addition, there was a significant positive correlation between the expression levels of NF-κB and miR-146a-5p, but a negative correlation between NF-κB mRNA and TIGAR mRNA in patients with AD, as well as miR-146a-5p and TIGAR mRNA in patients with AD. In AD-HNNs, miR-146a-5p targeted and downregulated the expression of TIGAR. Knockdown of NF-κB or overexpression of TIGAR markedly attenuated oxidative stress and pyroptosis in AD-HHNs, while concurrent overexpression of miR-146a-5p inhibited these effects. In conclusion, NF-κB-induced upregulation of miR-146a-5p promoted oxidative stress and pyroptosis in AD-HNNs by targeting TIGAR.


2019 ◽  
Vol 16 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Wenjie Hu ◽  
Lin Wen ◽  
Fang Cao ◽  
Yexin Wang

Background: Alzheimer’s Disease (AD) is a chronic progressive neurodegenerative disorder in a central nervous system seen. Objective: We aimed to study the miR-107 in Alzheimer's Disease (AD) pathology through regulating SYK and NF-κB signaling pathway. </P><P> Method: Bioinformatics analysis was performed to screen NF-κB signaling pathway and differentially expressed genes. The target relationship between miR-107 and SYK was verified by dual luciferase assay. QRT-PCR and western blot analysis were used to verify the expression level of miR-107, SYK and NF- κB signaling pathway related proteins of hippocampus primary neurons. BAY61-3606 and BAY11-7082 were purchased for functional examination. Morris water maze tests were performed to access spatial memory of AD mice with SYK and NF-κB signaling pathway inhibition. Fluorescence microscope dyeing experiment investigated the neurons nuclear form and apoptosis. Results: MiR-107 was lowly expressed while SYK was highly expressed in Tg19959 mouse model. Luciferase Assay confirmed the target relationship in miR-107 and SYK. With the inhibition of miR-107, SYK was up-regulated and the increase of p-p65 and the decrease of p-IκB-α suggested that NF-κB signaling pathway was activated in vitro. Morris water maze test indicated that the spatial memory of Tg19959 mice was increased with the treatment. The result of DAPI staining indicated that the inhibition of SYK or NF-κB signaling pathway reduced the apoptosis of Tg19959 mice neuron cell. Conclusion: MiR-107 exerts its effects through suppression of the NF-κB signaling pathway and SYK, the inhibition of SYK and NF-κB signaling pathway can improve spatial memory and suppress cell apoptosis.


2010 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Sridhar Krishnamurti

Alzheimer's disease is neurodegenerative disorder which affects a growing number of older adults every year. With an understanding of auditory dysfunction in Alzheimer's disease, the speech-language pathologist working in the health care setting can provide better service to these individuals. The pathophysiology of the disease process in Alzheimer's disease increases the likelihood of specific types of auditory deficits as opposed to others. This article will discuss the auditory deficits in Alzheimer's disease, their implications, and the value of clinical protocols for individuals with this disease.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


Sign in / Sign up

Export Citation Format

Share Document