Effects of Medium Cutoff Membranes on Pro-Inflammatory Cytokine and Oxidative Marker Levels in Patients with Sepsis Who Developed Acute Kidney Injury

2021 ◽  
pp. 1-8
Author(s):  
Mustafa Comoglu ◽  
Fatih Dede ◽  
Ezgi Coskun Yenigun ◽  
Canan Topcuoglu ◽  
Osman Inan ◽  
...  

<b><i>Introduction:</i></b> There is insufficient data on the role of the medium cutoff (MCO) membranes in the clearance of pro-inflammatory cytokines and oxidant radicals in patients with sepsis requiring hemodialysis. <b><i>Methods:</i></b> The study consisted of 38 septic patients who developed acute kidney injury (AKI) and who were scheduled to undergo 2 sessions of hemodialysis. Nineteen patients underwent their first dialysis session with the MCO membrane and 19 patients with the high-flux (HF) membrane. In the second session, the membranes were switched. Pro-inflammatory cytokine and oxidative marker levels were measured in blood samples obtained before and after both dialysis sessions. Reduction ratios were compared for the 2 types of hemodialysis membranes. <b><i>Results:</i></b> After the first session, there was a greater reduction in tumor necrosis factor (TNF)-α with the MCO membrane (28.2 ± 21.1 vs. 8.0 ± 6.6, <i>p</i> = 0.001). After the second session, there was a greater reduction in interleukin (IL)-6 (27.8 ± 26.5 vs. 5.9 ± 13.3, <i>p</i> = 0.003) and IL-1β (20.5 ± 21.1 vs. 4.0 ± 6.5, <i>p</i> = 0.004) with the MCO membrane. When the first and second sessions of all 38 patients were compared, the reductions in TNF-α, IL-6, and IL-1β were consistently greater for MCO than HF (<i>p</i> = 0.001, <i>p</i> = 0.006, <i>p</i> &#x3c; 0.001, respectively). The reductions in total antioxidant status, total oxidant status, and myeloperoxidase were not statistically different for the 2 types of dialysis membranes. <b><i>Conclusions:</i></b> MCO membrane was superior to HF membrane in the removal of cytokines in septic patients with AKI. However, a similar effect was not observed for oxidative stress markers.

Author(s):  
Ni Yang ◽  
Hai Wang ◽  
Li Zhang ◽  
Junhua Lv ◽  
Zequn Niu ◽  
...  

Abstract Acute kidney injury (AKI) is a complex syndrome with an abrupt decrease of kidney function, which is associated with high morbidity and mortality. Sepsis is the common cause of AKI. Mounting evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of sepsis-induced AKI. In this study, we aimed to illustrate the function and mechanism of lncRNA SNHG14 in lipopolysaccharide (LPS)-induced AKI. We found that SNHG14 was highly expressed in the plasma of sepsis patients with AKI. SNHG14 inhibited cell proliferation and autophagy and promoted cell apoptosis and inflammatory cytokine production in LPS-stimulated HK-2 cells. Functionally, SNHG14 acted as a competing endogenous RNA (ceRNA) to negatively regulate miR-495-3p expression in HK-2 cells. Furthermore, we identified that HIPK1 is a direct target of miR-495-3p in HK-2 cells. We also revealed that the SNHG14/miR-495-3p/HIPK1 interaction network regulated HK-2 cell proliferation, apoptosis, autophagy, and inflammatory cytokine production upon LPS stimulation. In addition, we demonstrated that the SNHG14/miR-495-3p/HIPK1 interaction network regulated the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β) via modulating NF-κB/p65 signaling in LPS-challenged HK-2 cells. In conclusion, our findings suggested a novel therapeutic axis of SNHG14/miR-495-3p/HIPK1 to treat sepsis-induced AKI.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Nuttha Lumlertgul ◽  
Anna Hall ◽  
Luigi Camporota ◽  
Siobhan Crichton ◽  
Marlies Ostermann

Abstract Background The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance. Methods This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, vascular endothelial growth factor, monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-dialyzer at 1, 6, 24, and 48 h after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes were the effluent and adsorptive clearance rates, mass balances, and changes in serial serum concentrations. Results Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 48 h (p < 0.001). The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clearance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout the 48-h period. Conclusion EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal. Trial registration: NCT03231748, registered on 27th July 2017.


2017 ◽  
Vol 68 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Mahmoud M. Said ◽  
Marwa M. Abd Rabo

AbstractAluminium (Al) is a neurotoxic metal that contributes to the progression of several neurodegenerative diseases. The aim of the present study was to evaluate the protective effect of dietary eugenol supplementation against aluminium (Al)- induced cerebral damage in rats. Male Wistar rats were divided into four groups: normal controls, rats fed a diet containing 6,000 μg g-1eugenol, rats intoxicated daily with aluminium chloride (84 mg kg-1body weight) p. o. and fed either a basal diet or a eugenol-containing diet. Daily oral administration of Al for four consecutive weeks to rats significantly reduced brain total antioxidant status (TAS) (11.42±0.31 μmol g-1tissue, p<0.001) with a subsequent significant enhancement of lipid peroxidation (MDA) (32.55±1.68 nmol g-1tissue, p<0.002). In addition, Al enhanced brain acetylcholinesterase activity (AChE) (46.22±4.90 U mg-1protein, p<0.001), tumour necrosis factor alpha (TNF-α) (118.72±11.32 pg mg-1protein, p<0.001), and caspase 3 (Casp-3) (8.77±1.26 ng mg-1protein, p<0.001) levels, and in contrast significantly suppressed brain-derived neurotrophic factor (BDNF) (82.74±14.53 pg mg-1protein, p<0.002) and serotonin (5-HT) (1.54±0.12 ng mg-1tissue, p<0.01) levels. Furthermore, decreased glial fibrillary acidic protein (GFAP) immunostaining was noticed in the striatum of Al-intoxicated rats, compared with untreated controls. On the other hand, co-administration of dietary eugenol with Al intoxication restored brain BDNF (108.76±2.64 pg mg-1protein) and 5-HT (2.13±0.27 ng mg-1tissue) to normal levels, enhanced brain TAS (13.43±0.24 μmol g-1tissue, p<0.05), with a concomitant significant reduction in TNF-α (69.98±4.74 pg mg-1protein) and Casp-3 (3.80±0.37 ng mg-1protein) levels (p<0.001), as well as AChE activity (24.50±3.25 U mg-1protein, p<0.001), and increased striatal GFAP immunoreactivity, compared with Al-treated rats. Histological findings of brain tissues verified biochemical data. In conclusion, eugenol holds potential as a neuroprotective agent through its hydrophobic, antioxidant, and anti-apoptotic properties, as well as its neurotrophic ability against Al-induced brain toxicity in rats.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2018 ◽  
Vol 44 (4) ◽  
pp. 530-538
Author(s):  
Aysun Çetin ◽  
İhsan Çetin ◽  
Semih Yılmaz ◽  
Ahmet Şen ◽  
Göktuğ Savaş ◽  
...  

Abstract Background Limited research is available concerning the relationship between oxidative stress and inflammation parameters, and simultaneously the effects of rosuvastatin on these markers in patients with hypercholesterolemia. We aimed to investigate the connection between cytokines and oxidative stress markers in patients with hypercholesterolemia before and after rosuvastatin treatment. Methods The study consisted of 30 hypercholesterolemic patients diagnosed with routine laboratory tests and 30 healthy participants. The lipid parameters, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), paraoxonase-1 (PON1) and malondialdehyde (MDA) levels in controls and patients with hypercholesterolemia before and after 12-week treatment with rosuvastatin (10 mg/kg/day), were analyzed by means of enzyme-linked immunosorbent assay. Results It was found that a 12-week cure with rosuvastatin resulted in substantial reductions in IL-1β, IL-6 and TNF-α and MDA levels as in rising activities of PON1 in patients with hypercholesterolemia. Before treatment, the PON1 levels were significantly negatively correlated with TNF-α and IL-6 in control group, while it was positively correlated with TNF-α in patients. Conclusion Our outcomes provide evidence of protected effect of rosuvastatin for inflammation and oxidative damage. It will be of great interest to determine whether the correlation between PON1 and cytokines has any phenotypic effect on PON1.


2017 ◽  
Vol 37 (22) ◽  
Author(s):  
Lei Yu ◽  
Takashi Moriguchi ◽  
Hiroshi Kaneko ◽  
Makiko Hayashi ◽  
Atsushi Hasegawa ◽  
...  

ABSTRACT Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulomacrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were downregulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a proinflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xudong Wang ◽  
Yali Wang ◽  
Mingjian Kong ◽  
Jianping Yang

Abstract Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.


Author(s):  
Wenyan Liu ◽  
Yang Yan ◽  
Dan Han ◽  
Yongxin Li ◽  
Qian Wang ◽  
...  

Abstract Background Systemic inflammation contributes to cardiac surgery–associated acute kidney injury (AKI). Cardiomyocytes and other organs experience hypothermia and hypoxia during cardiopulmonary bypass (CPB), which induces the secretion of cold-inducible RNA-binding protein (CIRP). Extracellular CIRP may induce a proinflammatory response. Materials and Methods The serum CIRP levels in 76 patients before and after cardiac surgery were determined to analyze the correlation between CIRP levels and CPB time. The risk factors for AKI after cardiac surgery and the in-hospital outcomes were also analyzed. Results The difference in the levels of CIRP (ΔCIRP) after and before surgery in patients who experienced cardioplegic arrest (CA) was 26-fold higher than those who did not, and 2.7-fold of those who experienced CPB without CA. The ΔCIRP levels were positively correlated with CPB time (r = 0.574, p < 0.001) and cross-clamp time (r = 0.54, p < 0.001). Multivariable analysis indicated that ΔCIRP (odds ratio: 1.003; 95% confidence interval: 1.000–1.006; p = 0.027) was an independent risk factor for postoperative AKI. Patients who underwent aortic dissection surgery had higher levels of CIRP and higher incidence of AKI than other patients. The incidence of AKI and duration of mechanical ventilation in patients whose serum CIRP levels more than 405 pg/mL were significantly higher than those less than 405 pg/mL (65.8 vs. 42.1%, p = 0.038; 23.1 ± 18.2 vs. 13.8 ± 9.2 hours, p = 0.007). Conclusion A large amount of CIRP was released during cardiac surgery. The secreted CIRP was associated with the increased risk of AKI after cardiac surgery.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Dan Li ◽  
Chenyu Li ◽  
Yan Xu

Abstract Background and Aims Acute kidney injury (AKI), commonly appeared in cardiac arrest, surgery and kidney transplantation which involved in ischemia-reperfusion (IR) injury of kidney. However, the mechanisms underlying inflammatory response in IR AKI is still unclear. Method Public dataset showed kruppel-like factor 6 (KLF6) was significantly highly expressed (P&lt;0.05) in AKI, implies KLF6 might be associated with AKI. To evaluate the mechanism of KLF6 on IR AKI, 30 rats were randomly divided into sham and IR group, and were sacrificed at 0 h, 3 h, 6 h, 12 h or 24 h after IR. Results The results showed KLF6 expression was peaking at 6 h after IR, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α were increased both in serum and kidney tissues after IR, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed KLF6 knock-down reduced the pro-inflammatory cytokines expression and increased the anti-inflammatory cytokines expression. Conclusion These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) targeting KLF6 expression may offer novel strategies to protect kidneys from IR AKI Figure KLF6, AKI, Control Inflammation


2020 ◽  
Vol 72 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Ilona Nowak-Kózka ◽  
Kamil J. Polok ◽  
Jacek Górka ◽  
Jakub Fronczek ◽  
Anna Gielicz ◽  
...  

Abstract Background The effect of renal replacement therapy on drug concentrations in patients with sepsis has not been fully elucidated because the pharmacokinetic properties of many antimicrobials are influenced by both pathophysiological and treatment-related factors. The aim of this study was to determine meropenem concentrations in patients with sepsis before and after the initiation of continuous venovenous hemodialysis with regional citrate anticoagulation (RCA-CVVHD). Methods The study included 15 critically ill patients undergoing RCA-CVVHD due to sepsis-induced acute kidney injury. All participants received 2 g of meropenem every 8 h in a prolonged infusion lasting 3 h. Meropenem concentrations were measured in blood plasma using high-performance liquid chromatography coupled with tandem mass spectrometry. Blood samples were obtained at six-time points prior to and at six-time points after introducing RCA-CVVHD. Results The median APACHE IV and SOFA scores on admission were 118 points (interquartile range [IQR] 97–134 points) and 19.5 points (IQR 18–21 points), respectively. There were no significant differences in the plasma concentrations of meropenem measured directly before RCA-CVVHD and during the first 450 min of the procedure. The drug concentration reached its peak 2 h after initiating the infusion and then steadily declined. Conclusions The concentration of high-dose meropenem (2 g every 8 h) administered in a prolonged infusion was similar before and after the introduction of RCA-CVVHD in patients with sepsis who developed acute kidney injury.


Sign in / Sign up

Export Citation Format

Share Document