scholarly journals Analysis and design of single phase voltage-frequency converter with optimized PI controller

Author(s):  
M. Asna ◽  
H. Shareef ◽  
S.N. Khalid ◽  
A. Al Dosari ◽  
B. Hamad ◽  
...  

This paper proposes a new voltage frequency converter (VFC) that converts both voltage and frequency to the required level of voltage and frequency in low voltage networks used in various countries. The proposed converter could be used as a universal power supply for sensitive AC loads. The converter is composed of, input voltage and frequency detection circuitry, full bridge boost rectifier and a DC to AC inverter. In addition, to improve the feasibility and performance of the converter, synchronous reference based PI (SRFPI) controller is adopted, where the system behaves similar to a DC-DC converter. The parameter selection of PI controller is done using a recent optimisation technique called Lightning Search Algorithm (LSA). The simulation of VFC is conducted in MATLAB/Simulink environment. The simulation results shows that LSA based PI controller provides better output voltage regulation with respect to the reference value under various load and input conditions.

Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850127 ◽  
Author(s):  
Vinaya Sagar Kommukuri ◽  
Kanungo Barada Mohanty ◽  
Aditi Chatterjee ◽  
Kishor Thakre

In this paper, a high performance single-phase modified bridgeless AC–DC converter with reduced switch voltage stress for power factor correction (PFC) is introduced. The proposed converter is based on a single-ended primary-inductance converter (SEPIC) to meet the demands of PFC to unity and output voltage regulation. To reduce the number of components, the input bridge is combined with the SEPIC converter since the conventional SEPIC PFC is suffering with high conduction losses. It offers many advantages, such as fewer semiconductor devices in current flowing path which lead to improve the thermal management, low stress on each component, improved efficiency, high power factor compared to classical converter. Detailed analysis and design equations of the converter are presented. Simulation and experimental results are discussed for a 300[Formula: see text]W prototypeunder the universal input voltage (85–235[Formula: see text]V) to validate the performance of the converter.


2013 ◽  
Vol 341-342 ◽  
pp. 1317-1325
Author(s):  
Lin Luo Fang

Traditional methods of AC/AC converters have general drawbacks: output voltage is lower than input voltage, the input side THD is poor and output voltage frequency is lower than input voltage frequency by using voltage regulation method and cycloconverters. We introduce the novel approach - DC-modulated AC/AC converters in this paper, which successfully overcomes the drawbacks. Simulation and experimental results of the DC-modulated AC/AC converter are the evidences to verify our design. These methods will be very widely used in industrial applications.


2018 ◽  
Vol 924 ◽  
pp. 836-840
Author(s):  
Bo Xue Hu ◽  
He Li ◽  
Zhuo Wei ◽  
Ya Feng Wang ◽  
Diang Xing ◽  
...  

A high-reliability auxiliary power supply (APS) for gate drive circuits is crucial to utilization of emerging medium voltage (MV ≥ 10 kV) Silicon Carbide (SiC) devices in high voltage applications. This paper proposes an active voltage divider based APS with lower arm voltage regulation. The proposed APS circuit is targeting the application of MV SiC devices in modular multilevel converters (MMCs). It can harvest energy from a MV (≥ 7 kV) dc bus to provide an isolated low voltage output to gate drive circuits of MV SiC devices. Compared to existing APS solutions, it can achieve a high input voltage (≥ 7 kV) with simple circuit structure and control scheme. In this paper, the working principle of the proposed APS is presented and a circuit design example is shown. A circuit prototype with 7 kV input and 15 V/10 W output has been built and tested to verify the effectiveness of the proposed solution.


2014 ◽  
Vol 575 ◽  
pp. 696-703
Author(s):  
Cheng Hai Gao ◽  
Jian Ru Wan ◽  
Jiang Li

The main electromagnetic radiation source and the generating mechanism in low voltage frequency converter were defined and analyzed in this paper according to electromagnetic radiation theory together with the discussion of the impact on radiation from raise time, falling time of pulse width modulation (PWM) signal and carrier frequency, so that the radiation can be understood more exactly in term of numerical value change, which helps specifically reduction of converter radiation during design phase in compliance with related international standards and technical norms regarding industrial converter. Started with the theory of electromagnetic field the zone around converter were differentiated and analyzed based on the radiation characteristics. As main means of radiation suppression in converter shielding and grounding were quantitatively analyzed. A series of tests with different power rating converters verified the calculation and analysis. Consequently the design of converter was guided to meet the requirements of standard.


2021 ◽  
Vol 13 (21) ◽  
pp. 12317
Author(s):  
Ahmad Zarepour ◽  
Amirhossein Rajaei ◽  
Hooman Mohammadi-Moghadam ◽  
Mahdi Shahparasti

This paper proposes a novel high-gain AC-DC converter based on the Cockcroft–Walton (CW) voltage multiplier which can be utilized in motor drive systems with low input voltage. In this topology, use of the voltage multiplier and boost circuit results in the increment of converter gain which has a significant impact on the cost and efficiency of the system. Moreover, in this converter, the AC voltage is directly changed to DC voltage using the switching method in high frequency and, as well, the power factor is corrected. Besides, this high-frequency converter contributes to the reduction of output ripple. On the other hand, cost efficiency, the low voltage stress on capacitors and diodes, compactness, and the high voltage ratio, are achieved from the Cockcroft–Walton circuit. Furthermore, the hysteresis method is presented for converter switching to correct the power factor. The converter is simulated in MATLAB software to demonstrate the effectiveness of the suggested method. Lastly, a laboratory prototype of the suggested converter is built, several tests are done in order to verify the theoretical analysis, and comprehensive comparison with the state-of-the-art converter is done.


Author(s):  
Chung-Yi Ting ◽  
Yi-Chieh Hsu ◽  
Jing-Yuan Lin ◽  
Chung-Ping Chen

This paper proposes a single-stage asymmetrical half-bridge fly-back (AHBF) converter with resonant mode using dual-mode control. The presented converter has an integrated boost converter and asymmetrical half-bridge fly-back converter and operates in resonant mode. The boost-cell always operates in discontinuous conduction mode (DCM) to achieve high power factor. The presented converter operates simultaneously using a variable-frequency-controller (VFC) and pulse-width-modulation (PWM) controller. Unlike the conventional single-stage design, the intermediate bus voltage of this controller can be regulated depending on the main power switch duty ratio. The asymmetrical half-bridge fly-back converter utilizes a variable switching frequency controller to achieve the output voltage regulation. The asymmetrical half-bridge fly-back converter can achieve zero-voltage-switching (ZVS) operation and significantly reduce the switching losses. Detailed analysis and design of this single-stage asymmetrical half-bridge fly-back converter with resonant mode is described. A wide AC input voltage ranging from 90 to 264 Vrms and output 19 V/ 120 W prototype converter was built to verify the theoretical analysis and performance of the presented converter.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Sign in / Sign up

Export Citation Format

Share Document