Abstract 207: Differential Regulation of Monocyte/Macrophage Atherogenic Properties by Adiponectin: Role of Macrophage Polarization and Adiponectin Receptors

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Caroline M vanStijn ◽  
Jason Kim ◽  
Rajendra K Tangirala

Adiponectin, an adipocytokine produced by the adipose tissue, exerts metabolic, anti-inflammatory and anti-atherogenic effects to ameliorate diabetes and cardiovascular disease and is a potentially important therapeutic target. However, mechanisms of adiponectin vascular actions and the regulation of macrophage adiponectin receptor expression under inflammatory/atherogenic activation remain unclear. Our studies with human monocytes/macrophages revealed differential adiponectin receptor regulation in subjects with insulin-resistance. Here, we investigated adiponectin regulation of macrophage gene expression under pro- and anti-inflammatory conditions. We addressed the hypothesis that differential activation of macrophages into the classical (M1) or alternative (M2) program alters their adiponectin receptor (AdipoR1 and AdipoR2) expression. The microarray gene expression analyses in human monocytes exposed to TNF-α showed that adiponectin inhibited several inflammatory/atherogenic genes. Our studies revealed that adiponectin itself induces AdipoR1 and AdipoR2 expression in macrophages. We further investigated the effects of macrophage polarization (M1 or M2) on adiponectin receptor expression in bone marrow-derived and peritoneal macrophages. These studies demonstrated that M1 activation (IFN-γ and LPS) significantly reduced AdipoR1 and AdipoR2 expression. In contrast, M2 activation of (IL-4 or IL-10) maintains a significantly higher level of AdipoR1 and AdipoR2. In M2 activation, adiponectin receptor expression was more substantial in IL-10 than IL-4-polarized macrophages. These results provide important evidence that macrophage polarization profoundly alters their adiponectin receptor expression and thus functional responses to adiponectin. Thus, adiponectin-mediated macrophage functions are regulated by adiponectin receptor expression which is modulated by the macrophage polarization which controls their inflammatory and atherogenic properties.

2014 ◽  
Vol 29 (2) ◽  
pp. 636-649 ◽  
Author(s):  
Caroline M. W. Stijn ◽  
Jason Kim ◽  
Aidons J. Lusis ◽  
Grant D. Barish ◽  
Rajendra K. Tangirala

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiaqi Wang ◽  
Shanshan Lu ◽  
Fuming Yang ◽  
Yi Guo ◽  
Zelin Chen ◽  
...  

AbstractAcupuncture is used in the treatment of a variety of inflammatory conditions and diseases. However, the mechanisms of its anti-inflammatory action are complex and have not been systematically investigated. Macrophages are key components of the innate immune system, thus, balancing the M1/M2 macrophage ratio and modulating cytokine levels in the inflammatory environment may be desirable therapeutic goals. Evidence has shown that acupuncture has anti-inflammatory actions that affect multiple body systems, including the immune, locomotory, endocrine, nervous, digestive, and respiratory systems, by downregulating pro-inflammatory M1 and upregulating anti-inflammatory M2 macrophages, as well as by modulating associated cytokine secretion. Macrophage polarization is controlled by the interlocking pathways of extrinsic factors, the local tissue microenvironment, and the neural-endocrine-immune systems. It has been suggested that polarization of T lymphocytes and cytokine secretions resulting in modulation of the autonomic nervous system and the hypothalamic–pituitary–adrenal axis, may be upstream mechanisms of acupuncture-induced macrophage polarization. We further propose that macrophage polarization could be the principal pathway involved in acupuncture immune regulation and provide the scientific basis for the clinical application of acupuncture in inflammatory conditions.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Jonatan Barrera-Chimal ◽  
Sebastian M Lechner ◽  
Soumaya E Moghrabi ◽  
Peter Kolkhof ◽  
Frédéric Jaisser

Introduction: Patients who survive an episode of acute kidney injury (AKI) are at high risk of de novo chronic kidney disease (CKD) development. Pharmacological mineralocorticoid receptor (MR) antagonism is useful to prevent CKD after a single episode of ischemic AKI in the rat. Objective: Test the involvement of myeloid MR in the development of kidney fibrosis after an ischemic AKI episode. Methods: We included 18 male C57/B6 mice that were divided in: sham, renal ischemia for 22.5 min and IR plus treatment with the non-steroidal MR antagonist finerenone (10 mg/kg) at -48, -24 and -1 h before IR. MR inactivation in myeloid cells (MR MyKO ) was achieved by crossing mice with the MR alleles flanked by loxP sites (MR f/f ) with mice expressing the Cre recombinase under the LysM promoter activity. In MR f/f and MR MyKO mice we induced renal IR of 22.5 min or sham surgery. The mice were followed-up during 4 weeks to test for AKI to CKD transition. In another set of mice, the macrophages were sorted from kidneys after 24 h of reperfusion and flow cytometry characterization or mRNA extraction was performed. Thyoglycolate elicited peritoneal macrophages were used for in vitro studies. Results: The progression of AKI to CKD after 4 weeks of renal ischemia in the untreated C57/B6 and MR f/f mice was characterized by a 50% increase in plasma creatinine, a 2-fold increase in the mRNA levels of TGF-β and fibronectin as well as by severe tubule-interstitial fibrosis. The mice that received finerenone or MR MyKO mice were protected against these alterations. Increased expression of M2-anti-inflamatory markers in kidney-isolated macrophages from finerenone-treated or MR MyKO mice was observed. The inflammatory population of Ly6C high macrophages was reduced by 50%. In peritoneal macrophages in culture, MR inhibition promoted increased IL-4 receptor expression and activation, facilitating macrophage polarization to an M2 phenotype. Conclusion: MR antagonism or myeloid MR deficiency facilitates macrophage polarization to a M2, anti-inflammatory phenotype after kidney IR, preventing maladaptive repair and chronic kidney fibrosis and dysfunction. MR inhibition acts through the modulation of IL-4 receptor signaling to facilitate macrophage phenotype switching.


2022 ◽  
Vol 20 (4) ◽  
pp. 71-78
Author(s):  
E. S. Trofimova ◽  
M. V. Zykova ◽  
M. G. Danilets ◽  
A. A. Ligacheva ◽  
E. Yu. Sherstoboev ◽  
...  

Background. Antigen-presenting cells (APCs), especially macrophages, play an important role in the body defense against various pathogens. Their dysfunction and polarization are associated with most inflammatory and autoimmune diseases. The inflammatory process is regulated by activation and / or inhibition of genes differentially expressed by macrophages. Successful correction of inflammation leads firstly to elimination of inflammatory stimuli and then to remodeling and restoration of tissues and organs. It was experimentally confirmed that silvercontaining bionanocomposites based on natural humic substances (HS) obtained from coal of different origin, as well as initial matrices of these HS, are capable of activating pro- and anti-inflammatory properties of macrophages.Aim. To study cytotoxic, pyrogenic, and immunomodulatory properties (arginine balance) of initial HS samples and samples of silver nanoparticles ultradispersed in these HS matrices (HS-AgNPs) in the cell culture of peritoneal macrophages, as well as their effect on pro- and anti-inflammatory properties of APCs.Materials and methods. Cultural and biochemical methods were used in the study.Results. The study showed that the samples CHE-K, CHE-AgNPs, CHS-K, and CHP-K increased M1 macrophage polarization due to stimulation of the NO-synthase activity and inhibition of arginase. The samples CHI-K, CHIAgNPs, CHP-AgNPs, and CHS-AgNPs modulated an alternative M2 or M2-like state of macrophage activation. At the same time, HS are not cytotoxic at effective concentrations, and three out of four studied samples did not contain pyrogenic impurities.Conclusion. The use of HS and their silver-containing bionanocomposites, which have the ability to greatly affect the polarization of antigen-presenting cells, is a promising research area in correction of the inflammatory response for solving an important social and medical problem of treating chronic wounds. 


2017 ◽  
Vol 5 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Clara R. Correia ◽  
Joana Gaifem ◽  
Mariana B. Oliveira ◽  
Ricardo Silvestre ◽  
João F. Mano

The interaction of human monocytes with different surface modified poly(l-lactic acid) films was evaluated. All surface modified films disrupted the balance of macrophage polarization towards a favorable anti-inflammatory profile, particularly after an LPS stimulus.


2019 ◽  
Vol 26 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Allison Rahtes ◽  
Kisha Pradhan ◽  
Mimosa Sarma ◽  
David Xie ◽  
Chang Lu ◽  
...  

Non-resolving inflammatory monocytes/macrophages are critically involved in the pathogenesis of chronic inflammatory diseases. However, mechanisms of macrophage polarization are not well understood, thus hindering the development of effective strategies to promote inflammation resolution. In this study, we report that macrophages polarized by subclinical super-low dose LPS preferentially expressed pro-inflammatory mediators such as ccl2 (which encodes the protein monocyte chemo attractant protein-1) with reduced expression of anti-inflammatory/homeostatic mediators such as slc40a1 (which encodes the protein ferroportin-1). We observed significantly elevated levels of the autophagy-associated and pro-inflammatory protein p62 in polarized macrophages, closely correlated with the inflammatory activation of ccl2 gene expression. In contrast, we noted a significant increase of ubiquitinated/inactive nuclear-erythroid-related factor 2 (NRF2), consistent with reduced slc40a1 gene expression in polarized macrophages. Addition of the homeostatic restorative agent phenylbutyrate (4-PBA) effectively reduced cellular levels of p62 as well as ccl2 gene induction by super-low dose LPS. On the other hand, application of 4-PBA also blocked the accumulation of ubiquitinated NRF2 and restored anti-inflammatory slc40a1 gene expression in macrophages. Together, our study provides novel insights with regard to macrophage polarization and reveals 4-PBA as a promising molecule in restoring macrophage homeostasis.


Author(s):  
Yi-Ru Liao ◽  
Jin-Yuarn Lin

Our previous studies demonstrated that quercetin (Q) could be ingested and metabolized by macrophages and exerted prophylactic immuno-stimulatory activity and therapeutic anti-inflammatory effects on lipopolysaccharide (LPS)-treated macrophages ex vivo. To further clarify its possible anti-inflammatory mechanism, Q was selected to treat mouse peritoneal macrophages that obtained from female BALB/c mice exposed to LPS i.p. for 12 h. Relative gene expression of pro-/anti-inflammatory (TNF-α/IL-10) cytokines and components of inflammation-related intracellular signaling pathways (TLR2, TLR4, NF-κB, JAK2 and STAT3) was analyzed using two-step reverse transcription (RT) and real-time quantitative polymerase chain reaction (qPCR). STAT3 protein phosphorylation was determined using an in-cell ELISA method. As a result, Q and its metabolite quercetin-3-O-β-D-glucuronide (Q3G) decreased TNF-α gene expression amounts and ratios of pro-/anti-inflammatory (TNF-α/IL-10) cytokine gene expressions, but increased IL-10 gene expression amounts in activated inflammatory macrophages, supporting a substantial anti-inflammatory potential of Q and Q3G treatments. However, Q3G had lower effects than those of Q. Importantly, Q inhibited TLR2 gene expression and phosphorylation of STAT3 protein in the inflamed cells. Our results are the first report to suggest that Q inhibits LPS-induced inflammation ex vivo through suppressing TLR2 gene expression and STAT3 protein phosphorylation in activated inflammatory macrophages. Q has potential to further apply for treating inflammation-associated diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1802
Author(s):  
Cornelia Wiegand ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Jörg Tittelbach

It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1428 ◽  
Author(s):  
Alison Hall ◽  
Martin Leuwer ◽  
Paul Trayhurn ◽  
Ingeborg D. Welters

Background.Adipose tissue contributes to the inflammatory response through production of cytokines, recruitment of macrophages and modulation of the adiponectin system. Previous studies have identified a down-regulation of adiponectin in pathologies characterised by acute (sepsis and endotoxaemia) and chronic inflammation (obesity and type-II diabetes mellitus). In this study, we investigated the hypothesis that LPS would reduce adiponectin receptor expression in a murine model of endotoxaemia and in adipoocyte and myocyte cell cultures.Methods.25 mg/kg LPS was injected intra-peritoneally into C57BL/6J mice, equivalent volumes of normal saline were used in control animals. Mice were killed at 4 or 24 h post injection and tissues harvested. Murine adipocytes (3T3-L1) and myocytes (C2C12) were grown in standard culture, treated with LPS (0.1 µg/ml–10 µg/ml) and harvested at 4 and 24 h. RNA was extracted and qPCR was conducted according to standard protocols and relative expression was calculated.Results.After LPS treatment there was a significant reduction after 4 h in gene expression of adipo R1 in muscle and peri-renal fat and of adipo R2 in liver, peri-renal fat and abdominal wall subcutaneous fat. After 24 h, significant reductions were limited to muscle. Cell culture extracts showed varied changes with reduction in adiponectin and adipo R2 gene expression only in adipocytes.Conclusions.LPS reduced adiponectin receptor gene expression in several tissues including adipocytes. This reflects a down-regulation of this anti-inflammatory and insulin-sensitising pathway in response to LPS. The trend towards base line after 24 h in tissue depots may reflect counter-regulatory mechanisms. Adiponectin receptor regulation differs in the tissues investigated.


RMD Open ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e001657
Author(s):  
Antti Pemmari ◽  
Lauri Tuure ◽  
Mari Hämäläinen ◽  
Tiina Leppänen ◽  
Teemu Moilanen ◽  
...  

Non-steroidal anti-inflammatory drugs are a widely used symptomatic treatment in osteoarthritis (OA), but their effects on cartilage remain controversial. We studied the effects of ibuprofen on gene expression in chondrocytes from patients with OA using RNA-Seq. Chondrocytes were isolated from cartilage samples of patients with OA undergoing knee replacement surgery, cultured with ibuprofen, and total mRNA was sequenced. Differentially expressed genes were identified with edgeR using pairwise comparisons. Functional analysis was performed using ingenuity pathway analysis (IPA). Ibuprofen did not induce statistically significant changes in chondrocyte transcriptome when the cells were cultured in the absence of added cytokines. In inflammatory conditions (when the cells were exposed to the OA-related cytokine interleukin (IL)-1β), 51 genes were upregulated and 42 downregulated by ibuprofen with fold change >1.5 in either direction. The upregulated genes included anti-inflammatory factors and genes associated with cell adhesion, while several mediators of inflammation were among the downregulated genes. IPA analysis revealed ibuprofen having modulating effects on inflammation-related pathways such as integrin, IL-8, ERK/MAPK and cAMP-mediated signalling pathways. In conclusion, the effects of ibuprofen on primary OA chondrocyte transcriptome appear to be neutral in normal conditions, but ibuprofen may shift chondrocyte transcriptome towards anti-inflammatory phenotype in inflammatory environments.


Sign in / Sign up

Export Citation Format

Share Document