scholarly journals Incidence of Cancer Treatment–Induced Arrhythmia Associated With Novel Targeted Chemotherapeutic Agents

Author(s):  
Andrew C. Nickel ◽  
Akshar Patel ◽  
Nabil F. Saba ◽  
Angel R. Leon ◽  
Mikhael F. El‐Chami ◽  
...  
2018 ◽  
Vol 71 (11) ◽  
pp. A273
Author(s):  
Andrew Nickel ◽  
Mikhael El-Chami ◽  
Nabil F. Saba ◽  
Angel Leon ◽  
Faisal Merchant

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 853
Author(s):  
Binita Shrestha ◽  
Lijun Wang ◽  
Eric M. Brey ◽  
Gabriela Romero Uribe ◽  
Liang Tang

Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.


2018 ◽  
Vol 127 ◽  
pp. 80-97 ◽  
Author(s):  
Valentina Gandin ◽  
Prajakta Khalkar ◽  
Jeremy Braude ◽  
Aristi P. Fernandes

2020 ◽  
Vol 21 (9) ◽  
pp. 3233 ◽  
Author(s):  
Karol Bukowski ◽  
Mateusz Kciuk ◽  
Renata Kontek

Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Depending on the mechanism of action, commonly used chemotherapeutic agents can be divided into several classes (antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase inhibitors, and others). Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR. The aim of this review is not only to demonstrate the latest data on the mechanisms of cellular resistance to anticancer agents currently used in clinical treatment but also to present the mechanisms of action of novel potential antitumor drugs which have been designed to overcome these resistance mechanisms. Better understanding of the mechanisms of MDR and targets of novel chemotherapy agents should provide guidance for future research concerning new effective strategies in cancer treatment.


2005 ◽  
Vol 23 (32) ◽  
pp. 8232-8241 ◽  
Author(s):  
Robert D. Loberg ◽  
Christopher J. Logothetis ◽  
Evan T. Keller ◽  
Kenneth J. Pienta

Traditionally, prostate cancer treatment, as well as all cancer treatment, has been designed to target the tumor cell directly via various hormonal and chemotherapeutic agents. Recently, the realization that cancer cells exist in complex microenvironments that are essential for the tumorigenic and metastatic potential of the cancer cells is starting the redefine the paradigm for cancer therapy. The propensity of prostate cancer cells to metastasize to bone is leading to the design of novel therapies targeting both the cancer cell as well as the bone microenvironment. Tumor cells in the bone interact with the extracellular matrix, stromal cells, osteoblasts, osteoclasts, and endothelial cells to promote tumor-cell survival and proliferation leading to a lethal phenotype that includes increased morbidity and mortality for patients with advanced prostate cancer. Several strategies are being developed that target these complex tumor cell–microenvironment interactions and target the signal transduction pathways of other cells important to the development of metastases, including the osteoclasts, osteoblasts, and endothelial cells of the bone microenvironment. Current and new therapies in metastatic prostate cancer will comprise a multitargeted approach aimed at both the tumor cell and the tumor microenvironment. Here, we review the current therapeutic strategies for targeting the prostate cancer–bone microenvironment and several single- and multiagent targeted approaches to the treatment of advanced prostate cancer that are under development.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chen-Hsi Hsieh ◽  
K. S. Clifford Chao ◽  
Hui-Fen Liao ◽  
Yu-Jen Chen

Cancer stem cells (CSCs) existing in human cancers have been demonstrated to be a major cause of cancer treatment resistance, invasion, metastasis, and relapse. Self-renewal pathways, Wnt/β-catenin, Sonic hedgehog (Shh), and the Notch signaling pathway play critical roles in developing CSCs and lead to angiogenesis, migration, invasion, and metastasis. Multidrug resistance (MDR) is an unfavorable factor causing the failure of treatments against cancer cells. The most important and thoroughly studied mechanism involved in MDR is the active efflux of chemotherapeutic agents through membrane drug transporters. There is growing evidence that Norcantharidin (NCTD), a water-soluble synthetic small molecule derivative of naturally occurring cantharidin from the medicinal insect blister beetle (Mylabris phalerataPallas), is capable of chemoprevention and tumor inhibition. We summarize investigations into the modulation of self-renewal pathways and MDR in CSCs by NCTD. This review may aid in further investigation of using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.


2020 ◽  
Author(s):  
Anjali Lathwal ◽  
Rajesh Kumar ◽  
Gajendra P.S. Raghava

AbstractOne of the emerging technologies to fight against cancer is oncolytic virus-based immunotherapy which directly lysis tumor cells. Recently, the FDA approved an oncolytic virus named T-vec for the treatment of melanoma; several hundred other viruses are in clinical trials. In order to facilitate the scientific community to fight against cancer, we build a repository of oncolytic viruses called OvirusTdb (https://webs.iiitd.edu.in/raghava/ovirustdb/). This is a manually curated repository where information is curated from research papers and patents. The current version of the repository maintains comprehensive information on therapeutically important oncolytic viruses with 5927 records where each record has 25 fields such as the virus species, cancer cell line, synergism with anti-cancer drugs, and many more. It stores information on 09 types of DNA and 15 types of RNA viruses; 300 recombinant and 09 wildtype viral strains; tested against 124 cancer types and 427 cancer cell lines. Approximately, 1047 records show improved anti-cancer response using combinatorial approach of chemotherapeutic agents with virus strains. Nearly, 3243 and 1506 records show cancer cell death via apoptosis induction and immune activation, respectively. In summary, a user-friendly web repository of oncolytic viruses for information retrieval and analysis have been developed to facilitate researchers in designing and discovering new oncolytic viruses for effective cancer treatment.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1975 ◽  
Author(s):  
Jasmine Wyatt ◽  
Manuel M. Müller ◽  
Mahvash Tavassoli

Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.


2020 ◽  
Vol 7 (2) ◽  
pp. 65-77
Author(s):  
Noor Altaleb

Although there are no 100% successful methods for treating cancer, chemotherapy is still one of the most commonly used approaches in its management. One of the most significant problems in cancer treatment is the resistance of cancer cells to chemotherapeutic agents. This review aims to unveil the factors contributing to this problem originally beginning with fundamental units like biomarkers and microRNAs. As more studies and researches carried out, various levels of miRNA expression were found among normal and cancer cells. Overexpression of oncomir and downregulation of tumour-suppressor miRNAs can lead to the emergence of cancer. Data collected from studying these miRNAs can help in the diagnosis, prognosis and developing therapies, which will assist in overcoming the emerged resistance.


Sign in / Sign up

Export Citation Format

Share Document