Abstract P007: Cardiomyocyte Damage-Released Extracellular S100A1 Protein Promotes Regeneration of Infarcted Myocardium by Modulating Cardiac Fibroblast Function

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
David Rohde ◽  
Gang Qiu ◽  
Nicole Herzog ◽  
Hugo A Katus ◽  
Angelika Bierhaus ◽  
...  

Background: Similar to heart muscle-specific creatinkinase (CK-MB), S100A1 protein is released from damaged human cardiomyocytes in response to myocardial infarction (MI). Since S100A1-knock out (SKO) mice display rapid post-MI onset of adverse myocardial remodeling and accelerated transition to heart failure, we assessed the hypothesis that ischemia-related release of S100A1 protein modulates myocardial regeneration. Methods and Results: After LAD ligation in C57/B6 mice, S100A1 serum levels peaked at 10 µg/ml 8 hours post-MI, precisely mirroring the time course previously observed in MI patients. RT-PCR analyses in post-MI whole heart samples revealed significantly lower I-CAM (−50%) and IL-10 (−75%) mRNA abundance as well as heightened Collagen-1 (+40%) and VEGF (+80%) expression in SKO vs. WT mice (p<0.05, n=6 in each group). Interestingly, injection of an S100A1-neutralizing antibody prior to MI in WT mice mimicked the abnormalities observed in post-ischemic SKO animals. To further elucidate extracellular S100A1 biological activity, cardiomyocytes, cardiac fibroblasts (CF), endothelial and smooth muscle cells were exposed to S100A1 in vitro . A rapid internalization of S100A1 was exclusively found in CF, resulting in a phosphorylation of ERK1/2, JNK, and p38 with subsequent activation of NF-kappaB as assessed by Western Blot (WB) and EMSA. RT-PCR and WB analyses revealed significant alterations in CF gene expression in response to S100A1, including an increase in I-CAM (3,5-fold) and IL-10 (20-fold) mRNA levels and diminished Col-1 (−80%) expression. Similar effects were observed after direct injection of S100A1 protein into the left ventricular apical region of WT mice in vivo (S100A1- vs. PBS-injection, n=6). In SKO mice, intraperitoneal application of S100A1 prior to MI largely normalized the adverse gene expression pattern towards WT animals. Conclusions: Our study provides first evidence for cardiomyocyte damage-released S100A1 to act as an endogenous mediator of post-MI inflammation and tissue repair. Considering today's unability to manipulate these molecular mechanisms, extracellular S100A1 might represent a promising target for future therapies of MI.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4375-4375
Author(s):  
Aristea Batsali ◽  
Charalampos Pontikoglou ◽  
Emmanuel Agrafiotis ◽  
Elisavet Kouvidi ◽  
Irene Mavroudi ◽  
...  

Abstract We have previously shown (Batsali A et al., Blood 2013:122, 1212) that ex vivo expanded human mesenchymal stem/stromal cells (MSCs) derived from the Wharton's jelly (WJ) of the umbilical cord exhibit increased proliferative capacity and reduced potential to differentiate in vitro to adipocytes and osteocytes, compared to bone marrow (BM) derived-MSCs. Provided that the WNT-pathways are involved in proliferation and differentiation of BM-MSCs, we assumed that the aforementioned findings might be attributed, at least in part, to aberrant WNT-signaling in WJ-MSCs. In support of this hypothesis, we found that gene expression of the Wnt antagonist sFRP4, a promoter of adipogenesis in human adipose tissue-derived MSCs, was significantly down-regulated in WJ-MSCs and that mRNA levels of WNT-induced secreted protein-1, (WISP-1), a regulator of osteogenesis in BM-MSCs, were also significantly reduced in WJ-MSCs. These observations imply a connection between these WNT-associated molecules and the biological properties of WJ-MSCs, which requires, however, further investigation. The present study was undertaken so as to explore the effects of WISP-1 and sFRP4 in growth and differentiation of ex-vivo expanded WJ-MSCs. MSCs were isolated from consenting healthy donors’ BM aspirates (n=5) and from the WJ of full-term neonates (n=5) after written informed consent of the family. MSCs were in vitro expanded, re-seeded for a total of 4 passages (P) and phenotypically characterized by flow cytometry at P3. WJ-MSCs were grown in the absence or presence of rhWISP-1 or rhsFRP4 and cell proliferation was assessed by a methyl-triazolyl-tetrazolium (MTT)-assay. In addition, WJ-MSCs were induced to differentiate in vitro to osteoblasts and adipocytes, in the absence or presence of rhWISP-1 or rhsFRP4 respectively. Differentiation was quantified by cytochemical stains and by the expression of adipocyte- and osteocyte-specific genes by real time RT-PCR. Relative gene expression was calculated by the ΔCt method. The expression of WISP-1 and sFRP4 by non-differentiated WJ- and BM-MSCs as well as by WJ-MSCs during osteogenesis and adipogenesis, respectively, was also evaluated by real time RT-PCR. Culture-expanded cells from both WJ and BM displayed typical morphological and immunophenotypic MSC characteristics and were able to differentiate into osteoblasts and adipocytes. In line with our previous work WISP-1 and sFRP4 mRNA were significantly decreased in WJ-MSCs, compared to BM-MSCs. To explore the role of WISP-1 in WJ-MSCs' growth we cultured cells in the presence of 50 ng/ml or 100 ng/ml rhWISP1 and assessed cell proliferation at multiple time points, throughout a 14-day culture. WISP-1 treatment did not lead to any significant effect in cell numbers. Next, we investigated the time course of WISP1 gene expression during osteoinduction. In all samples, WISP1 mRNA levels increased during osteogenesis. As compared to day0 (exposure to osteogenic medium), the increase in gene expression reached statistical significance at days 7 and 14. Furthermore, WISP-1 gene expression was significantly higher at day 14, compared to day 7. To investigate the functional effects of WISP1 on the osteoblastic differentiation of WJ-MSCs, cells were cultured for 7 days in osteogenic medium supplemented with 50ng/ml rh-WISP1. A significant increase in the expression of RUNX2 and ALP was detected, compared to non-treated cells. To investigate the impact of sFRP4 in WJ-MSC's proliferation we exposed cells to 20nM rhsFRP4 for 14 days. Live cell numbers, at various time points, were significantly reduced in treated cells. Regarding the time course of sFRP4 expression during adipogenic differentiation, sFRP4 mRNA levels increased during adipogenesis reaching statistical significance at days7 and 14, as compared to day0. In addition, sFRP4 gene expression was significantly higher at day 14 as compared to day 7. Finally, when cells underwent adipogenic differentiation in the presence of rhSFRP4, a significant increase in PPARG and CEBPA mRNA levels was detected at day 14, as compared to non-treated cells Collectively, our results suggest that WISP-1 and sFRP4 may be actively implicated in proliferation and differentiation of WJ-MSCs. The functional role of these WNT-related molecules in the biology of WJ-MSCs requires deeper understanding, in view of the growing interest for the use of WJ-MSCs in cell-based therapies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 331-340
Author(s):  
WE Kaminski ◽  
E Jendraschak ◽  
K Baumann ◽  
R Kiefl ◽  
S Fischer ◽  
...  

Lipoxygenases (LXs) catalyze formation of leukotrienes and hydroxy-eicosatetraenoic acids (HETEs), proinflammatory, and spasmogenic autacoids that are critical for host defense systems. We studied the expression and regulation of LX genes (12-LX, 5-LX, and 15-LX) and the 5-lipoxygenase activating protein (FLAP) in human mononuclear cells (MNC) and granulocytes using a quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. We show that 12-LX mRNA is constitutively expressed in resting platelet-free MNC. 12-LX gene expression was upregulated by activation with lipopolysaccharide (LPS). The formation of 12-HETE was inducible with ionophore in MNC, as assessed by high-performance liquid chromatography (HPLC) and gas chromatography, and increased after LPS pretreatment. In addition to 12- LX, resting MNC expressed the genes for 5-LX and FLAP constitutively. Quantitative time course analyses of 12-LX, 5-LX, and FLAP gene expression suggested coregulation of 12-LX and FLAP mRNAs, and reciprocal regulation of 5-LX and FLAP mRNAs. During cell stimulation with LPS 5-LX mRNA levels remained unchanged, whereas FLAP gene expression increased. No 15-LX mRNA expression or 15-HETE formation was detectable in unstimulated and activated MNC. In contrast to MNC, quantitative RT-PCR mRNA analysis showed intermittent intraindividual expression of the 5-LX and FLAP genes in resting granulocytes. mRNAs for 12-LX and 15-LX were not expressed. On stimulation of granulocytes ex vivo, mRNA expression of 5-LX and FLAP was upregulated. Stimulation by LPS differed from that by ionophore A23187. Neither LPS nor ionophore induced gene expression of 12-LX or 15-LX in granulocytes. Our data indicate that resting human MNC and granulocytes express LX and FLAP genes in a cell-specific manner. Cell activation induces coordinated upregulation of 12-LX and FLAP genes in MNC, and 5-LX and FLAP genes in granulocytes, respectively. The constitutive expression of 12-LX mRNA, its upregulation on cell activation, and the formation of 12-HETE clearly indicate the presence of a functional 12-LX in human MNC.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 331-340 ◽  
Author(s):  
WE Kaminski ◽  
E Jendraschak ◽  
K Baumann ◽  
R Kiefl ◽  
S Fischer ◽  
...  

Abstract Lipoxygenases (LXs) catalyze formation of leukotrienes and hydroxy-eicosatetraenoic acids (HETEs), proinflammatory, and spasmogenic autacoids that are critical for host defense systems. We studied the expression and regulation of LX genes (12-LX, 5-LX, and 15-LX) and the 5-lipoxygenase activating protein (FLAP) in human mononuclear cells (MNC) and granulocytes using a quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. We show that 12-LX mRNA is constitutively expressed in resting platelet-free MNC. 12-LX gene expression was upregulated by activation with lipopolysaccharide (LPS). The formation of 12-HETE was inducible with ionophore in MNC, as assessed by high-performance liquid chromatography (HPLC) and gas chromatography, and increased after LPS pretreatment. In addition to 12- LX, resting MNC expressed the genes for 5-LX and FLAP constitutively. Quantitative time course analyses of 12-LX, 5-LX, and FLAP gene expression suggested coregulation of 12-LX and FLAP mRNAs, and reciprocal regulation of 5-LX and FLAP mRNAs. During cell stimulation with LPS 5-LX mRNA levels remained unchanged, whereas FLAP gene expression increased. No 15-LX mRNA expression or 15-HETE formation was detectable in unstimulated and activated MNC. In contrast to MNC, quantitative RT-PCR mRNA analysis showed intermittent intraindividual expression of the 5-LX and FLAP genes in resting granulocytes. mRNAs for 12-LX and 15-LX were not expressed. On stimulation of granulocytes ex vivo, mRNA expression of 5-LX and FLAP was upregulated. Stimulation by LPS differed from that by ionophore A23187. Neither LPS nor ionophore induced gene expression of 12-LX or 15-LX in granulocytes. Our data indicate that resting human MNC and granulocytes express LX and FLAP genes in a cell-specific manner. Cell activation induces coordinated upregulation of 12-LX and FLAP genes in MNC, and 5-LX and FLAP genes in granulocytes, respectively. The constitutive expression of 12-LX mRNA, its upregulation on cell activation, and the formation of 12-HETE clearly indicate the presence of a functional 12-LX in human MNC.


2004 ◽  
Vol 19 (3) ◽  
pp. 292-302 ◽  
Author(s):  
Joshua M. Spin ◽  
Shriram Nallamshetty ◽  
Raymond Tabibiazar ◽  
Euan A. Ashley ◽  
Jennifer Y. King ◽  
...  

Mesodermal and epidermal precursor cells undergo phenotypic changes during differentiation to the smooth muscle cell (SMC) lineage that are relevant to pathophysiological processes in the adult. Molecular mechanisms that underlie lineage determination and terminal differentiation of this cell type have received much attention, but the genetic program that regulates these processes has not been fully defined. Study of SMC differentiation has been facilitated by development of the P19-derived A404 embryonal cell line, which differentiates toward this lineage in the presence of retinoic acid and allows selection for cells adopting a SMC fate through a differentiation-specific drug marker. We sought to define global alterations in gene expression by studying A404 cells during SMC differentiation with oligonucleotide microarray transcriptional profiling. Using an in situ 60-mer array platform with more than 20,000 mouse genes derived from the National Institute on Aging clone set, we identified 2,739 genes that were significantly upregulated after differentiation was completed (false-detection ratio <1). These genes encode numerous markers known to characterize differentiated SMC, as well as many unknown factors. We further characterized the sequential patterns of gene expression during the differentiation time course, particularly for known transcription factor families, providing new insights into the regulation of the differentiation process. Changes in genes associated with specific biological ontology-based pathways were evaluated, and temporal trends were identified for functional pathways. In addition to confirming the utility of the A404 model, our data provide a large-scale perspective of gene regulation during SMC differentiation.


2009 ◽  
Vol 297 (2) ◽  
pp. H550-H555 ◽  
Author(s):  
Gregori Casals ◽  
Josefa Ros ◽  
Alessandro Sionis ◽  
Mercy M. Davidson ◽  
Manuel Morales-Ruiz ◽  
...  

B-type natriuretic peptide (BNP) is a peptide hormone of myocardial origin with significant cardioprotective properties. Patients with myocardial ischemia present with high levels of BNP in plasma and elevated expression in the myocardium. However, the molecular mechanisms of BNP induction in the ischemic myocardium are not well understood. The aim of the investigation was to assess whether myocardial hypoxia induces the production of BNP in human ventricular myocytes. To test the hypothesis that reduced oxygen tension can directly stimulate BNP gene expression and release in the absence of hemodynamic or neurohormonal stimuli, we used an in vitro model system of cultured human ventricular myocytes (AC16 cells). Cells were cultured under normoxic (21% O2) or hypoxic (5% O2) conditions for up to 48 h. The accumulation of BNP, atrial natriuretic peptide (ANP), and vascular endothelial growth factor (VEGF) was then measured. Hypoxia stimulated the protein release of BNP and VEGF but not ANP. In concordance, the increased mRNA levels of BNP and VEGF but not ANP were found on culturing AC16 cells under hypoxic conditions. The analysis of the transcriptional activity of the hypoxia-inducible factor 1 (HIF-1) in nuclear extracts showed that HIF-1 activity was induced under hypoxic conditions. Finally, the treatment of AC16 cells with the HIF-1 inhibitor rotenone in hypoxia inhibited BNP and VEGF release. In conclusion, these data indicate that hypoxia induces the synthesis and secretion of BNP in human ventricular myocytes, likely through HIF-1-enhanced transcriptional activity.


2005 ◽  
Vol 288 (6) ◽  
pp. H2702-H2707 ◽  
Author(s):  
Xiao-Ming Gao ◽  
Helen Kiriazis ◽  
Xiao-Lei Moore ◽  
Xin-Heng Feng ◽  
Karen Sheppard ◽  
...  

As a prelude to investigating the mechanism of regression of pressure overload-induced left ventricular (LV) hypertrophy (LVH), we studied the time course for the development and subsequent regression of LVH as well as accompanying alterations in cardiac function, histology, and gene expression. Mice were subjected to aortic banding for 4 or 8 wk to establish LVH, and regression was initiated by release of aortic banding for 6 wk. Progressive increase in LV mass and gradual chamber dilatation and dysfunction occurred after aortic banding. LVH was also associated with myocyte enlargement, interstitial fibrosis, and enhanced expression of atrial natriuretic peptide, collagen I, collagen III, and matrix metalloproteinase-2 but suppressed expression of α-myosin heavy chain and sarcoplasmic reticulum Ca2+-ATPase. Aortic debanding completely or partially reversed LVH, chamber dilatation and dysfunction, myocyte size, interstitial fibrosis, and gene expression pattern, each with a distinct time course. The extent of LVH regression was dependent on the duration of pressure overload, evidenced by the fact that restoration of LV structure and function was complete in animals subjected to 4 wk of aortic banding but incomplete in animals subjected to 8 wk of aortic banding. In conclusion, LVH regression comprises a variety of morphological, functional, and genetic components that show distinct time courses. A longer period of pressure overload is associated with a slower rate of LVH regression.


2004 ◽  
Vol 287 (4) ◽  
pp. H1625-H1631 ◽  
Author(s):  
Katherine L. Tran ◽  
Xiangru Lu ◽  
Ming Lei ◽  
Qingping Feng ◽  
Qingyu Wu

High levels of plasma atrial natriuretic peptides (ANP) are associated with pathological conditions such as congestive heart failure (CHF). Recently, we have identified a cardiac serine protease, corin, that is the pro-ANP convertase. In this study, we examined the regulation of corin gene expression in cultured hypertrophic cardiomyocytes and in the left ventricular (LV) myocardium of a rat model of heart failure. Quantitative RT-PCR analysis showed that both corin and ANP mRNA levels were significantly increased in phenylephrine (PE)-stimulated rat neonatal cardiomyocytes in culture. The increase in corin mRNA correlated closely with the increase in cell size and ANP mRNA expression in the PE-treated cells ( r = 0.95, P < 0.01; r = 0.92, P < 0.01, respectively). The PE-treated cardiomyocytes had an increased activity in converting recombinant human pro-ANP to biologically active ANP, as determined by a pro-ANP processing assay and a cell-based cGMP assay. In a rat model of heart failure induced by ligation of the left coronary artery, corin mRNA expression in the noninfarcted LV myocardium was significantly higher than that of control heart tissues from sham-operated animals, when examined by Northern blot analysis and RT-PCR at 8 wk. These results indicate that the corin gene is upregulated in hypertrophic cardiomyocytes and failing myocardium. Increased corin expression may contribute to elevation of ANP in the setting of cardiac hypertrophy and heart failure.


2000 ◽  
Vol 85 (10) ◽  
pp. 3828-3839 ◽  
Author(s):  
Chi-Hsin Chiang ◽  
Kwai Wa Cheng ◽  
Shigeo Igarashi ◽  
Parimal S. Nathwani ◽  
Peter C. K. Leung

Estrogen is one of the major sex steroid hormones that is produced from the human ovary, and its actions are established to be a receptor-mediated process. Despite the demonstration of estrogen receptor (ER) expression, little is known regarding the regulation of ER in the human ovary. In the present study we investigated the expression and hormonal regulation of ERα and ERβ in human granulosa-luteal cells (hGLCs). Using RT-PCR amplification, both ERα and ERβ messenger ribonucleic acid (mRNA) were detected from hGLCs. Northern blot analysis revealed that ERα is expressed at a relatively lower level than ERβ. Basal expression studies indicated that ERα mRNA levels remain unchanged, whereas ERβ mRNA levels increased with time in culture in vitro, suggesting that ERβ is likely to play a dynamic role in mediating estrogen action in hGLCs. The regulation of ERα and ERβ expression by hCG was examined. hCG treatment (10 IU/mL) significantly attenuated the ERα (45%; P &lt; 0.01) and ERβ (40%; P&lt; 0.01) mRNA levels. The hCG-induced decrease in ERα and ERβ expression was mimicked by 8-bromo-cAMP (1 mmol/L) and forskolin (10μ mol/L) treatment. Additional studies using a specific protein kinase A (PKA) inhibitor (adenosine 3′,5′-cyclic monophosphorothioate, Rp-isomer, triethylammonium salt) and an adenylate cyclase inhibitor (SQ 22536) further implicated the involvement of the cAMP/PKA signaling pathway in hCG action in these cells. The hCG-induced decrease in ERα and ERβ mRNA levels was prevented in the presence of these inhibitors. Next, the effect of GnRH on ER expression was studied. Sixty-eight percent (P &lt; 0.001) and 60% (P &lt; 0.001) decreases in ERα and ERβ mRNA levels, respectively, were observed after treatment with 0.1 μmol/L GnRH agonist (GnRHa). Pretreatment of the cells with a protein kinase C (PKC) inhibitor (GF109203X) completely reversed the GnRHainduced down-regulation of ERα and ERβ expression, suggesting the involvement of PKC in GnRH signal transduction in hGLCs. In agreement with the semiquantitative RT-PCR results, Western blot analysis detected a decrease in ERα and ERβ proteins levels in hGLCs after treatment with hCG (10 IU/mL), GnRH (0.1 μmol/L), 8-bromo-cAMP (1 mmol/L), forskolin (10 μmol/L), or phorbol 12-myristate 13 acetate (10 μmol/L). Functionally, we demonstrated an inhibition of progesterone production in hGLCs in vitro by 17β-estradiol, and this inhibitory effect was eliminated by pretreatment of 10 IU/mL hCG or 0.1 μmol/L GnRHa for 24 h before 17β-estradiol administration. In summary, we observed a differential expression of ERα and ERβ mRNA in hGLCs in vitro. The demonstration of hCG- and GnRHa-induced down-regulation of ERα and ERβ gene expression suggests that hCG and GnRH may contribute to the control of granulosa-luteal cell function. Furthermore, our data suggest that the effects of hCG and GnRH on ERα and ERβ expression in hGLCs are mediated in part by activation of PKA and PKC signaling pathways, respectively.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 43 ◽  
Author(s):  
Ho Man Tang ◽  
C. Conover Talbot Jr ◽  
Ming Chiu Fung ◽  
Ho Lam Tang

Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis in vitro and in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis – the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5359-5368 ◽  
Author(s):  
Joseph R. Kurian ◽  
Kim L. Keen ◽  
Ei Terasawa

Cellular and molecular mechanisms underlying pulsatile GnRH release are not well understood. In the present study, we examined the developmental changes in intracellular calcium dynamics, peptide release, gene expression, and DNA methylation in cultured GnRH neurons derived from the nasal placode of rhesus monkeys. We found that GnRH neurons were functionally immature, exhibiting little fluctuation in intracellular calcium ([Ca2+]i) and sparse pulses of GnRH peptide release in the first 12 d in vitro (div). By 14–18 div, GnRH neurons exhibited periodic [Ca2+]i oscillations, synchronizing at approximately 60-min intervals and GnRH pulses occurred at approximately 60-min intervals. Interestingly, the total GnRH peptide release further increased after 18 div. Measurement of GnRH mRNA and gene CpG methylation status at 0, 14, and 20 div indicated that mRNA levels significantly (P &lt; 0.05) increased between 14 and 20 div, just as maximal decapeptide release was observed. By bisulfite sequencing across a 5′ CpG island of the GnRH gene, we further found that methylation at eight of 14 CpG sites significantly (P &lt; 0.05) decreased between 0 and 20 div. These data indicate that epigenetic differentiation occurs during GnRH neuronal development and suggest that increased GnRH gene expression and decreased CpG methylation status are molecular phenotypes of mature GnRH neurons. To our knowledge, this is the first report that developmental DNA demethylation occurs in postmitotic neurons toward a stable neuronal phenotype.


Sign in / Sign up

Export Citation Format

Share Document