Abstract 98: Profiling GPCR Expression in Cardiac Fibroblasts and Myofibroblasts

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Krishna Sriram ◽  
Nakon Aroonsakool ◽  
Alexander Michkov ◽  
Paul Insel

G-protein coupled receptors (GPCRs) are the largest class of cell surface receptors, serving as drug targets, at least in part, due to their diversity, selectivity in tissue expression and ability to regulate a wide variety of cellular functions. We hypothesized that cardiac fibroblasts (CFs) and pro-fibrotic myofibroblasts (myoFs) may express GPCRs that will regulate their activity and will identify previously unappreciated GPCRs as potential therapeutic targets for cardiac fibrosis. To test this hypothesis, we profiled non-chemosensory GPCR mRNA expression by using qPCR-based GPCR arrays in studies of CFs isolated from ventricular tissue of rats, mice and humans. Particular attention was paid to assessing cells at low passage (1-3) and grown on substrates that mimic the stiffness of cardiac tissue in-vivo. MyoFs were obtained by treating CFs ex-vivo with TGFβ, and from CFs that spontaneously transformed to MyoFs by growth on hard tissue culture substrates.We find that CFs from humans, rats and mice express ~120 GPCRs and that a majority of GPCRs (>75%), especially highly expressed GPCRs, are detected in human, rats and/or mice CFs; ~40% of highly expressed GPCRs are orphan receptors (without known physiologic agonists). Of GPCRs with known G-protein linkages, Gi-coupled receptors are most numerous, followed by Gq-, Gs- and G12/13-coupled GPCRs. GPCR expression profiles of rat atrial and ventricular CFs are highly similar in terms of both identity and level of expression. By contrast, GPCR expression in cardiac myocytes (CMs) differs significantly from CFs: most highly expressed receptors in CFs are undetected or much lower expressed in CMs. Several GPCRs detected in MyoFs have reduced expression vs CFs but a subset of GPCRs have higher expression in MyoFs. Validation of mRNA expression via protein detection as well as functional assays helps confirm the presence of a large number of the GPCRs. Conclusions: CFs and MyoFs from rodents and humans express ~120 GPCRs, including many orphan GPCRs. Atrial and ventricular CFs have similar GPCR profiles but ones that differ from that of CMs. CFs and MyoFs show differences in the number and nature of GPCRs expressed. We hypothesize that GPCRs higher expressed in MyoFs may contribute to their pro-fibrotic phenotype.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Shuin Park ◽  
Sara Ranjbarvaziri ◽  
Fides Lay ◽  
Peng Zhao ◽  
Aldons J Lusis ◽  
...  

Fibroblasts are a heterogeneous population of cells that function within the injury response mechanisms across various tissues. Despite their importance in pathophysiology, the effects of different genetic backgrounds on fibroblast contribution to the development of disease has yet to be addressed. It has previously been shown that mice in the Hybrid Mouse Diversity Panel, which consists of 110 inbred mouse strains, display a spectrum in severity of cardiac fibrosis in response to chronic treatment of isoproterenol (ISO). Here, we characterized cardiac fibroblasts (CFbs) from three different mouse strains (C57BL/6J, C3H/HeJ, and KK/HIJ) which exhibited varying degrees of fibrosis after ISO treatment. The select strains of mice underwent sham or ISO treatment via intraperitoneally-implanted osmotic pumps for 21 days. Masson’s Trichrome staining showed significant differences in fibrosis in response to ISO, with KK/HIJ mice demonstrating the highest levels, C3H/HeJ exhibiting milder levels, and C57BL/6J demonstrating little to no fibrosis. When CFbs were isolated and cultured from each strain, the cells demonstrated similar traits at the basal level but responded to ISO stimuli in a strain-specific manner. Likewise, CFbs demonstrated differential behavior and gene expression in vivo in response to ISO. ISO treatment caused CFbs to proliferate similarly across all strains, however, immunofluorescence staining showed differential levels of CFb activation. Additionally, RNA-sequencing analysis revealed unique gene expression profiles of all three strains upon ISO treatment. Our study depicts the phenotypic heterogeneity of CFbs across different strains of mice and our results suggest that ISO-induced cardiac fibrosis is a complex process that is independent of fibroblast proliferation and is mainly driven by the activation/inhibition of genes involved in pro-fibrotic pathways.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Maradumane L Mohan ◽  
Lisa M Grove ◽  
Mitchell A Olman ◽  
Sathyamangla V Naga Prasad

Phosphoinositide 3 Kinase γ (PI3Kγ) belongs to a family of lipid kinases genetic deletion of which leads to pressure overload induced cardiac fibrosis in mice. However, the mechanism by which PI3Kγ mediates cardiac fibrosis is unknown. Cardiac fibrosis is a key underlying cause of fatal heart failure. A well-known fibrogenic mechanism is the generation of myofibroblasts, which are characterized by overexpression of smooth muscle α-actin (αSMA). Myofibroblast is a fibrosis-effector cell that produces pro-fibrotic cytokines and exuberant extracellular matrix that leads to cardiac fibrosis. To evaluate the role of PI3Kγ in fibrotic phenotype, cardiac tissue lysates from 3 months old WT and PI3Kγ null (PI3Kγ -/- ) mice were assessed for the expression of αSMA. Interestingly, there is significant up-regulation of αSMA in PI3Kγ -/- in comparison to littermate controls (WT) even at baseline suggesting that loss of PI3Kγ predisposes the hearts towards fibrosis. To directly confirm that PI3Kγ -/- cardiac fibroblasts (CF) exhibit a myofibroblast phenotype even at baseline, CF were isolated from hearts of WT and PI3Kγ -/- mice and assessed for myofibroblast phenotype by immunostaining for αSMA in stress fibers. Fluorescence microscopy on the CF from PI3Kγ -/- mice showed intense immunostaining for αSMA with greater number of cells exhibiting αSMA in stress fibers when compared to CF from WT mice. Consistently, immunoblotting showed significantly higher αSMA protein levels in PI3Kγ -/- CF compared to WT CF suggesting that PI3Kγ -/- fibroblasts are “primed” to undergo myofibroblast differentiation. To determine the role of kinase-independent function of PI3Kγ in vivo, we generated unique mice lines with cardiomyocyte-specific expression of either kinase-dead PI3Kγ (PI3Kγ inact ) or constitutively active PI3Kγ ( Myr PI3Kγ) in the global PI3Kγ -/- (PI3Kγ inact /PI3Kγ -/- or Myr PI3Kγ/PI3Kγ -/- ) and measured αSMA. Surprisingly, abundance of αSMA protein is significantly reduced in PI3Kγ inact /PI3Kγ -/- when compared to WT and PI3Kγ -/- mice. These data reveal that kinase-independent function of PI3Kγ is a key component in the myocyte-initiated pathway that ultimately drives CF to become myofibroblasts uncovering a novel mechanism of regulating pro-fibrotic signals.


2016 ◽  
Vol 48 (3) ◽  
pp. 220-229 ◽  
Author(s):  
Christopher A. Drummond ◽  
Michael C. Hill ◽  
Huilin Shi ◽  
Xiaoming Fan ◽  
Jeffrey X. Xie ◽  
...  

Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Krista L Filomeno ◽  
Sunil G Rattan ◽  
Sheri Bage ◽  
Matthew Zeglinski ◽  
Michael P Czubryt ◽  
...  

Introduction: Coronary heart disease is causal to myocardial infarction (MI) and cardiac fibrosis. Upon ischemic myocardial injury, resident cardiac fibroblasts phenoconvert to myofibroblasts and synthesize large amounts of fibrillar collagens to produce scar tissue. Although the myofibroblast numbers are reduced in the infarct scar following the completion of wound healing, a sub-population of cells persist in the wounded area, leading to maladaptive chronic remodeling of the scar area and eventually the non-infarcted myocardium. Ski has been identified as a repressor of the TGF-β1 signaling pathway, attenuating the myofibroblast phenotype and its functional properties. Scleraxis has been implicated in canonical TGF-β1 signaling to promote collagen1α2 expression. We investigated how Ski and Scleraxis contribute to physiological and pathological wound healing in vivo. Methods: The study was carried out using 64 male Sprague-Dawley rats. The left anterior descending (LAD) coronary artery was ligated to induce a myocardial infarction. Control (sham) operated animals underwent surgery without ligation of the LAD artery. Animals were sacrificed at 2, 4, and 8 weeks post-MI and tissue collected for Western blot and qPCR studies. Results: Scleraxis mRNA expression remained at baseline at 2 and 8 weeks post-MI, but was significantly increased 4 weeks post-MI. Scleraxis protein expression was down-regulated within the scar area of infarcted hearts when compared to control samples 2 and 4 weeks post-MI. Ski mRNA expression was up-regulated within the scar area of infarcted hearts 2, 4 and 8 weeks after infarction. Conclusions: Scleraxis protein is down-regulated in myofibroblasts of the infarct scar in the chronic stages of myocardial infarction, corresponding to the maturation of the scar. At these stages of wound healing, we have previously published that Ski is up-regulated in the cytosol of these same cells. We suggest reciprocal feedback in the expression of these two proteins exists in myofibroblasts in the infarct scar. We hope to learn more about the Ski/Scleraxis feedback loop in pathological wound healing to identify novel therapeutic targets.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. e66-e73 ◽  
Author(s):  
Chih-Wen Ni ◽  
Haiwei Qiu ◽  
Amir Rezvan ◽  
Kihwan Kwon ◽  
Douglas Nam ◽  
...  

Abstract Recently, we showed that disturbed flow caused by a partial ligation of mouse carotid artery rapidly induces atherosclerosis. Here, we identified mechanosensitive genes in vivo through a genome-wide microarray study using mouse endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery. We found 62 and 523 genes that changed significantly by 12 hours and 48 hours after ligation, respectively. The results were validated by quantitative polymerase chain reaction for 44 of 46 tested genes. This array study discovered numerous novel mechanosensitive genes, including Lmo4, klk10, and dhh, while confirming well-known ones, such as Klf2, eNOS, and BMP4. Four genes were further validated for protein, including LMO4, which showed higher expression in mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hours, followed by inflammatory and immune responses by 48 hours. Determining the functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3692-3700 ◽  
Author(s):  
Hui-Ping Gu ◽  
Sen Lin ◽  
Ming Xu ◽  
Hai-Yi Yu ◽  
Xiao-Jun Du ◽  
...  

Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.


Heart Rhythm ◽  
2013 ◽  
Vol 10 (11) ◽  
pp. 1743
Author(s):  
S. de Jong ◽  
L. van Middendorp ◽  
R.H.A. Hermans ◽  
J.M.T. de Bakker ◽  
M.F.A. Bierhuizen ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Sashwati Roy ◽  
Savita Khanna ◽  
Chandan K Sen

Background . Transforming growth factor beta-1 (TGFbeta-1) is a key cytokine implicated in the development of cardiac fibrosis following ischemia-reperfusion (IR) injury. The profibrotic effects of TGFbeta-1 are primarily attributable to the differentiation of cardiac fibroblasts (CF) to myofibroblasts. Previously, we have reported perceived hyperoxia (Circ Res 92:264 –71), sub-lethal reoxygenation shock during IR, induces differentiation of CF to myofibroblasts at the infarct site. The mechanisms underlying oxygen-sensitive induction of TGFbeta-1 mRNA remain to be characterized. Hypothesis . Fra2 mediates oxygen-induced TGFbeta-1 mRNA expression in adult cardiac fibroblasts. Methods. TGFbeta-1 mRNA expression in infarct tissue was investigated in an IR injury model. The left anterior descending coronary artery of mice was transiently occluded for 60 minutes followed by reperfusion to induce IR injury. Spatially resolved infarct and non-infarct tissues were collected at 0, 1, 3, 5, and 7 days post-IR using laser capture microdissection. TGFbeta-1 mRNA levels were measured using real-time PCR. To investigate the role of oxygen in the regulation of TGFbeta-1, we used our previously reported model of perceived hyperoxia where CF (from 5wks old mice) after isolation were cultured at 5%O 2 (physiological pO 2 ) followed by transferring them to 20%O 2 to induce hyperoxic insult. Results & Conclusions. In vivo, a significant increase (p<0.01; n=5) in TGFbeta-1 mRNA was observed at the infarct site already at day 1 post-IR. The levels continued to increase until day 7 post-IR. In vitro, exposure of CF to 20%O 2 hyperoxic insult induced TGFbeta-1 mRNA (p<0.001; n=4) and protein (p<0.01; n=4) expression. Using a TGFbeta-1 promoter-luciferase reporter and DNA binding assays, we collected first evidence that AP-1 and its component Fra2 as major mediators of oxygen-induced TGFbeta-1 expression. Exposure to 20%O 2 resulted in increased localization of Fra2 in nucleus. siRNA-dependent Fra-2 knock-down completely abrogated oxygen-induced TGFbeta1 expression. In conclusion, this study presents first evidence that Fra-2 is involved in inducible TGFbeta1 expression in CF. Fra2 was noted as being central in regulating oxygen-induced TGFbeta-1 expression.s


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3325
Author(s):  
Sofia Karkampouna ◽  
Danny van der Helm ◽  
Mario Scarpa ◽  
Bart van Hoek ◽  
Hein W. Verspaget ◽  
...  

Oncofetal protein, CRIPTO, is silenced during homeostatic postnatal life and often re-expressed in different neoplastic processes, such as hepatocellular carcinoma. Given the reactivation of CRIPTO in pathological conditions reported in various adult tissues, the aim of this study was to explore whether CRIPTO is expressed during liver fibrogenesis and whether this is related to the disease severity and pathogenesis of fibrogenesis. Furthermore, we aimed to identify the impact of CRIPTO expression on fibrogenesis in organs with high versus low regenerative capacity, represented by murine liver fibrogenesis and adult murine heart fibrogenesis. Circulating CRIPTO levels were measured in plasma samples of patients with cirrhosis registered at the waitlist for liver transplantation (LT) and 1 year after LT. The expression of CRIPTO and fibrotic markers (αSMA, collagen type I) was determined in human liver tissues of patients with cirrhosis (on a basis of viral hepatitis or alcoholic disease), in cardiac tissue samples of patients with end-stage heart failure, and in mice with experimental liver and heart fibrosis using immuno-histochemical stainings and qPCR. Mouse models with experimental chronic liver fibrosis, induced with multiple shots of carbon tetrachloride (CCl4) and acute liver fibrosis (one shot of CCl4), were evaluated for CRIPTO expression and fibrotic markers. CRIPTO was overexpressed in vivo (Adenoviral delivery) or functionally sequestered by ALK4Fc ligand trap in the acute liver fibrosis mouse model. Murine heart tissues were evaluated for CRIPTO and fibrotic markers in three models of heart injury following myocardial infarction, pressure overload, and ex vivo induced fibrosis. Patients with end-stage liver cirrhosis showed elevated CRIPTO levels in plasma, which decreased 1 year after LT. Cripto expression was observed in fibrotic tissues of patients with end-stage liver cirrhosis and in patients with heart failure. The expression of CRIPTO in the liver was found specifically in the hepatocytes and was positively correlated with the Model for End-stage Liver Disease (MELD) score for end-stage liver disease. CRIPTO expression in the samples of cardiac fibrosis was limited and mostly observed in the interstitial cells. In the chronic and acute mouse models of liver fibrosis, CRIPTO-positive cells were observed in damaged liver areas around the central vein, which preceded the expression of αSMA-positive stellate cells, i.e., mediators of fibrosis. In the chronic mouse models, the fibrosis and CRIPTO expression were still present after 11 weeks, whereas in the acute model the liver regenerated and the fibrosis and CRIPTO expression resolved. In vivo overexpression of CRIPTO in this model led to an increase in fibrotic markers, while blockage of CRIPTO secreted function inhibited the extent of fibrotic areas and marker expression (αSMA, Collagen type I and III) and induced higher proliferation of residual healthy hepatocytes. CRIPTO expression was also upregulated in several mouse models of cardiac fibrosis. During myocardial infarction CRIPTO is upregulated initially in cardiac interstitial cells, followed by expression in αSMA-positive myofibroblasts throughout the infarct area. After the scar formation, CRIPTO expression decreased concomitantly with the αSMA expression. Temporal expression of CRIPTO in αSMA-positive myofibroblasts was also observed surrounding the coronary arteries in the pressure overload model of cardiac fibrosis. Furthermore, CRIPTO expression was upregulated in interstitial myofibroblasts in hearts cultured in an ex vivo model for cardiac fibrosis. Our results are indicative for a functional role of CRIPTO in the induction of fibrogenesis as well as a potential target in the antifibrotic treatments and stimulation of tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document