scholarly journals Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age

2020 ◽  
Vol 4 (3) ◽  
pp. 910-924 ◽  
Author(s):  
Davide Nuzzi ◽  
Mario Pellicoro ◽  
Leonardo Angelini ◽  
Daniele Marinazzo ◽  
Sebastiano Stramaglia

We implement the dynamical Ising model on the large-scale architecture of white matter connections of healthy subjects in the age range 4–85 years, and analyze the dynamics in terms of the synergy, a quantity measuring the extent to which the joint state of pairs of variables is projected onto the dynamics of a target one. We find that the amount of synergy in explaining the dynamics of the hubs of the structural connectivity (in terms of degree strength) peaks before the critical temperature, and can thus be considered as a precursor of a critical transition. Conversely, the greatest amount of synergy goes into explaining the dynamics of more central nodes. We also find that the aging of structural connectivity is associated with significant changes in the simulated dynamics: There are brain regions whose synergy decreases with age, in particular the frontal pole, the subcallosal area, and the supplementary motor area; these areas could then be more likely to show a decline in terms of the capability to perform higher order computation (if structural connectivity was the sole variable). On the other hand, several regions in the temporal cortex show a positive correlation with age in the first 30 years of life, that is, during brain maturation.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arian Ashourvan ◽  
Preya Shah ◽  
Adam Pines ◽  
Shi Gu ◽  
Christopher W. Lynn ◽  
...  

AbstractA major challenge in neuroscience is determining a quantitative relationship between the brain’s white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes’ activation patterns’ probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM’s interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions’ distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain’s structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giuseppe Giacopelli ◽  
Domenico Tegolo ◽  
Emiliano Spera ◽  
Michele Migliore

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.


2019 ◽  
Vol 51 (3) ◽  
pp. 155-166
Author(s):  
Annamaria Painold ◽  
Pascal L. Faber ◽  
Eva Z. Reininghaus ◽  
Sabrina Mörkl ◽  
Anna K. Holl ◽  
...  

Bipolar disorder (BD) is a chronic illness with a relapsing and remitting time course. Relapses are manic or depressive in nature and intermitted by euthymic states. During euthymic states, patients lack the criteria for a manic or depressive diagnosis, but still suffer from impaired cognitive functioning as indicated by difficulties in executive and language-related processing. The present study investigated whether these deficits are reflected by altered intracortical activity in or functional connectivity between brain regions involved in these processes such as the prefrontal and the temporal cortices. Vigilance-controlled resting state EEG of 13 euthymic BD patients and 13 healthy age- and sex-matched controls was analyzed. Head-surface EEG was recomputed into intracortical current density values in 8 frequency bands using standardized low-resolution electromagnetic tomography. Intracortical current densities were averaged in 19 evenly distributed regions of interest (ROIs). Lagged coherences were computed between each pair of ROIs. Source activity and coherence measures between patients and controls were compared (paired t tests). Reductions in temporal cortex activity and in large-scale functional connectivity in patients compared to controls were observed. Activity reductions affected all 8 EEG frequency bands. Functional connectivity reductions affected the delta, theta, alpha-2, beta-2, and gamma band and involved but were not limited to prefrontal and temporal ROIs. The findings show reduced activation of the temporal cortex and reduced coordination between many brain regions in BD euthymia. These activation and connectivity changes may disturb the continuous frontotemporal information flow required for executive and language-related processing, which is impaired in euthymic BD patients.


Author(s):  
Dale T Tovar ◽  
Robert S Chavez

Abstract The medial prefrontal cortex (MPFC) is among the most consistently implicated brain regions in social and affective neuroscience. Yet, this region is also highly functionally heterogeneous across many domains and has diverse patterns of connectivity. The extent to which the communication of functional networks in this area is facilitated by its underlying structural connectivity fingerprint is critical for understanding how psychological phenomena are represented within this region. In the current study, we combined diffusion magnetic resonance imaging and probabilistic tractography with large-scale meta-analysis to investigate the degree to which the functional co-activation patterns of the MPFC is reflected in its underlying structural connectivity. Using unsupervised machine learning techniques, we compared parcellations between the two modalities and found congruence between parcellations at multiple spatial scales. Additionally, using connectivity and coactivation similarity analyses, we found high correspondence in voxel-to-voxel similarity between each modality across most, but not all, subregions of the MPFC. These results provide evidence that meta-analytic functional coactivation patterns are meaningfully constrained by underlying neuroanatomical connectivity and provide convergent evidence of distinct subregions within the MPFC involved in affective processing and social cognition.


2020 ◽  
Vol 117 (33) ◽  
pp. 20244-20253 ◽  
Author(s):  
Muhua Zheng ◽  
Antoine Allard ◽  
Patric Hagmann ◽  
Yasser Alemán-Gómez ◽  
M. Ángeles Serrano

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.


2020 ◽  
Vol 4 (3) ◽  
pp. 761-787 ◽  
Author(s):  
Katharina Glomb ◽  
Emeline Mullier ◽  
Margherita Carboni ◽  
Maria Rubega ◽  
Giannarita Iannotti ◽  
...  

Recently, EEG recording techniques and source analysis have improved, making it feasible to tap into fast network dynamics. Yet, analyzing whole-cortex EEG signals in source space is not standard, partly because EEG suffers from volume conduction: Functional connectivity (FC) reflecting genuine functional relationships is impossible to disentangle from spurious FC introduced by volume conduction. Here, we investigate the relationship between white matter structural connectivity (SC) and large-scale network structure encoded in EEG-FC. We start by confirming that FC (power envelope correlations) is predicted by SC beyond the impact of Euclidean distance, in line with the assumption that SC mediates genuine FC. We then use information from white matter structural connectivity in order to smooth the EEG signal in the space spanned by graphs derived from SC. Thereby, FC between nearby, structurally connected brain regions increases while FC between nonconnected regions remains unchanged, resulting in an increase in genuine, SC-mediated FC. We analyze the induced changes in FC, assessing the resemblance between EEG-FC and volume-conduction- free fMRI-FC, and find that smoothing increases resemblance in terms of overall correlation and community structure. This result suggests that our method boosts genuine FC, an outcome that is of interest for many EEG network neuroscience questions.


2011 ◽  
Vol 91 (4) ◽  
pp. 1357-1392 ◽  
Author(s):  
Angela D. Friederici

Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.


Author(s):  
Pradeepa Ruwan Wanni Arachchige ◽  
Sadhani Karunarathna ◽  
Abdul Chalik Meidian ◽  
Ryo Ueda ◽  
Wataru Uchida ◽  
...  

Background: Although quite a very few studies have tested structural connectivity changes following an intervention, it reflects only selected key brain regions in the motor network. Thus, the understanding of structural connectivity changes related to the motor recovery process remains unclear. Objective: This study investigated structural connectivity changes of the motor execution network following a combined intervention of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and intensive occupational therapy (OT) after a stroke using graph theory approach. Methods: Fifty-six stroke patients underwent Fugl-Meyer Assessment (FMA), Wolf Motor Function Test-Functional Ability Scale (WMFT-FAS), diffusion tensor imaging (DTI), and T1 weighted imaging before and after the intervention. We examined graph theory measures related to twenty brain regions using structural connectomes. Results: The ipsilesional and contralesional hemisphere showed structural connectivity changes post-intervention after stroke. We found significantly increased regional centralities and nodal efficiency within the frontal pole and decreased degree centrality and nodal efficiency in the ipsilesional thalamus. Correlations were found between network measures and clinical assessments in the cuneus, postcentral gyrus, precentral gyrus, and putamen of the ipsilesional hemisphere. The contralesional areas such as the caudate, cerebellum, and frontal pole also showed significant correlations. Conclusions: This study was helpful to expand the understanding of structural connectivity changes in both hemispheric networks during the motor recovery process following LF-rTMS and intensive OT after stroke.


2021 ◽  
Author(s):  
E. Caitlin Lloyd ◽  
Karin E. Foerde ◽  
Alexandra F. Muratore ◽  
Natalie Aw ◽  
David Semanek ◽  
...  

AbstractBackgroundAnorexia nervosa (AN) is characterised by disturbances in cognition and behaviour surrounding eating and weight, which may relate to the structural connectivity of the brain that supports effective information processing and transfer.MethodsDiffusion-weighted MRI data acquired from female patients with AN (n = 148) and female healthy controls (HC; n = 119), aged 12-40 years, were combined across five cross-sectional studies. Probabilistic tractography was completed, and full cortex connectomes describing streamline counts between 84 brain regions generated and harmonised. The network-based statistic tested between-group differences in connectivity strength of brain subnetworks. Whole-brain connectivity of brain regions was indexed using graph theory tools, and compared between groups using multiple linear regression. Associations between structural connectivity variables that differed between groups, and illness severity markers, were explored amongst AN patients using multiple linear regression. Statistical models included age, motion, and study as covariates.OutcomesThe network-based statistic indicated AN patients, relative to HC, had reduced connectivity in a network comprising subcortical regions and greater connectivity between frontal cortical regions (p < 0.05, FWE corrected). Graph theory analyses supported reduced connectivity of subcortical regions, and greater connectivity of left occipital cortex, in patients relative to HC (p < 0.05, permutation corrected). Reduced subcortical network connectivity was associated with lower BMI among the AN group.InterpretationStructural differences in subcortical and cortical networks are present in AN, and may reflect illness mechanisms.FundingGlobal Foundation for Eating Disorders; Klarman Family Foundation; Translating Duke Health Initiative; NIMH (MH099388, MH076195, MH110445, MH105452, MH079397, MH113737).


2021 ◽  
Author(s):  
Ronaldo V. Nunes ◽  
Marcelo Bussotti Reyes ◽  
Jorge F. Mejias ◽  
Raphael Y. de Camargo

AbstractInferring the structural connectivity from electrophysiological measurements is a fundamental challenge in systems neuroscience. Directed functional connectivity measures, such as the Generalized Partial Directed Correlation (GPDC), provide estimates of the causal influence between areas. However, such methods have a limitation because their estimates depend on the number of brain regions simultaneously recorded. We analyzed this problem by evaluating the effectiveness of GPDC to estimate the connectivity of a ground-truth, data-constrained computational model of a large-scale mouse cortical network. The model contains 19 cortical areas modeled using spiking neural populations, and directed weights for long-range projections were obtained from a tract-tracing cortical connectome. We show that the GPDC estimates correlate positively with structural connectivity. Moreover, the correlation between structural and directed functional connectivity is comparable even when using only a few cortical areas for GPDC estimation, a typical scenario for electro-physiological recordings. Finally, GPDC measures also provided a measure of the flow of information among cortical areas.


Sign in / Sign up

Export Citation Format

Share Document