Enhanced β-Catenin/Foxo1 Activity Alleviates Pulmonary Fibrosis by Inhibiting β-Catenin/T Cell Factor Signaling

2020 ◽  
Vol 10 (2) ◽  
pp. 182-188
Author(s):  
Kun Gui ◽  
Yu Huang ◽  
Meijin Wang ◽  
Jun Yang

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia, resulting in chronic respiratoryfailure and eventually death. β-catenin/Foxo1 showed a protective property in kidney fibrosis, but the role of β-catenin/Foxo1 in IPF was unclear. Our study aimed to investigate the role of β-catenin/Foxo1 in IPF and explore its underlying mechanism. The IPF model was established by injection of bleomycin (BLM) in vivo and stimulation by TGF-β1 in MRC5 cell in vitro. Haematoxylin-eosin staining and Masson’s trichrome staining were performed to examine histopathological injury in lung. Protein expression of corresponding genes was detected using western blot. Immunofluorescence staining assay was carried out to detect the expression of β-catenin, Foxo1, TCF and α-SMA. The expression levels of inflammatory cytokines were determined using ELISA kit assay. The results showed that BLM induced a serious pulmonary injury and proliferated fibroblasts. A higher interaction of β-catenin with TCF and a lower interaction of β-catenin with Foxo1 was found in BLM group compared to the control group. TGF-β1 promoted β-catenin/TCF, whereas ICG-001 inhibited β-catenin/TCF, and promoted β-catenin/Foxo1. Furthermore, ICG-001 reversed TGF-β1 induced largely production of inflammatory cytokines and accumulation of extracellular matrix, as well as high expression of α-SMA. However, AS1842856, a FOXO1 antagonist, strengthened the effects induced by TGF-β1. In summary, our study revealed that β-catenin/Foxo1 protected against IPF through inhibiting inflammatory response and extracellular matrix accumulation, providing an alternative approach to explain the potential mechanism of IPF and seek for more effective therapeutic drugs.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessia Varone ◽  
Chiara Amoruso ◽  
Marcello Monti ◽  
Manpreet Patheja ◽  
Adelaide Greco ◽  
...  

Abstract Background Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. Methods Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. Results The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. Conclusion The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


Author(s):  
Asmaa Nabil-Adam ◽  
Mohamed A. Shreadah

Background: This study aimed to investigate the potential bioactivity and the ameliorative role of Galaxaura oblongata (G. oblongata) against LPS-induced toxicity by using hematological parameters. Objective: It is aimed also to examine its protective effect using the immunohistochemistry of liver and lungs as biomarkers in male BALB/C albino mice. Materials and Methods: the current study carried out using different in-vitro and in-vivo assays such as phytochemical, antioxidants, anti-inflammatory for in-vitro where the hematological and immunohistochemistry for lung and liver were investigated in vivo. Results: There are no previous studies were performed to investigate the in vivo and in vitro effects of the G. oblongata extracts as antioxidant and anti-inflammatory due to their rareness compared to other red algae. LPS treated mice revealed a significant decrease in total number of WBCs, RBCs, platelets, and HGB%, MPV, MCV and MCHC compared to the control group. On contrast, the HCT and MCHC were increased in the induction group which was treated with LPS compared to the control group. Furthermore, the immunohistochemistry results of the present study revealed the protective effect of G. oblongata compared to the induction group. G. oblongata can be used as protective marine natural products against the toxicity induced by LPS. Conclusion: It exhibited a significant ameliorative role against the alterations in the hematological parameters and immunohistochemistry of liver and lungs, and helps to reduce as well as coordinate the acute inflammations caused by TNF.


2019 ◽  
Vol 316 (1) ◽  
pp. L269-L279 ◽  
Author(s):  
Tianwen Lai ◽  
Mindan Wu ◽  
Chao Zhang ◽  
Luanqing Che ◽  
Feng Xu ◽  
...  

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/− mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/− mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Rui Li ◽  
Tianfeng Liu ◽  
Juanjuan Shi ◽  
Wenqing Luan ◽  
Xuan Wei ◽  
...  

Abstract Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.


2007 ◽  
Vol 19 (1) ◽  
pp. 209
Author(s):  
S.-W. Kim ◽  
M.-J. Lee ◽  
B.-C. Yang ◽  
G.-S. Im ◽  
H.-H. Seong ◽  
...  

The application of matrix proteins to culture systems for growth of embryos is a logical extension in the quest to better simulate the in vivo culture environment. Matrigel, a commercially available extracellular matrix product containing collagen IV, laminin, entactin, and proteoglycans isolated from mouse tumor cells, has been tested. Development of mouse pre-implantation embryos cultivated in conventional culture medium was contrasted to that of embryos grown in solubilized Matrigel medium. In the solubilized Matrigel medium, in vitro blastocyst formation and hatching were significantly enhanced over that observed in the medium alone control. Therefore, the aim of this study was to investigate the effect of solubilized Matrigel on the development of porcine embryos after in vitro fertilization. In vitro-matured oocytes were fertilized in mTBM medium with fresh spermatozoa for 6 h. Putative zygotes were cultured in PZM-3 medium supplemented with (matrigel group) or without (control group) 0.8% Matrigel for 6 days. The number of cells in blastocysts was determined by staining with Hoechst 33342. Assessment of apoptosis in blastocysts was examined by TUNEL. The statistical significance of the data was analyzed using chi-square test and Student's t-test. The addition of Matrigel appeared not to increase the proportion of blastocysts (control: 71/219, 21.8 � 2.2% vs. Matrigel: 69/220, 23.5 � 5.8%). However, the mean cell numbers were significantly increased by Matrigel (Matrigel: n = 31, 52.9 � 18.1 vs. control: n = 30, 42.3 � 14.4; P < 0.01). The proportion of apoptotic cells was significantly lower in the Matrigel group (Matrigel: 4.5 � 4.2% vs. control: 6.6 � 5.5%; P < 0.05). In this experiment, Matrigel appeared to increase blastocyst quality of porcine embryos. Results suggest that Matrigel, as an extracellular matrix component, may be another avenue for formulating more physiological culture systems.


2017 ◽  
Vol 312 (1) ◽  
pp. E27-E36 ◽  
Author(s):  
Servane Le Plénier ◽  
Arthur Goron ◽  
Athanassia Sotiropoulos ◽  
Eliane Archambault ◽  
Chantal Guihenneuc ◽  
...  

Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated ( P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.


2019 ◽  
Author(s):  
Sara Pedron ◽  
Gabrielle L. Wolter ◽  
Jee-Wei E. Chen ◽  
Sarah E. Laken ◽  
Jann N. Sarkaria ◽  
...  

AbstractTherapeutic options to treat primary glioblastoma (GBM) tumors are scarce. GBM tumors with epidermal growth factor receptor (EGFR) mutations, in particular a constitutively active EGFRvIII mutant, have extremely poor clinical outcomes. GBM tumors with concurrent EGFR amplification and active phosphatase and tensin homolog (PTEN) are sensitive to the tyrosine kinase inhibitor erlotinib, but the effect is not durable. A persistent challenge to improved treatment is the poorly understood role of cellular, metabolic, and biophysical signals from the GBM tumor microenvironment on therapeutic efficacy and acquired resistance. The intractable nature of studying GBM cell in vivo motivates tissue engineering approaches to replicate aspects of the complex GBM tumor microenvironment. Here, we profile the effect of erlotinib on two patient-derived GBM specimens: EGFR+ GBM12 and EGFRvIII GBM6. We use a three-dimensional gelatin hydrogel to present brain-mimetic hyaluronic acid (HA) and evaluate the coordinated influence of extracellular matrix signals and EGFR mutation status on GBM cell migration, survival and proliferation, as well as signaling pathway activation in response to cyclic erlotinib exposure. Comparable to results observed in vivo for xenograft tumors, erlotinib exposure is not cytotoxic for GBM6 EGFRvIII specimens. We also identify a role of extracellular HA (via CD44) in altering the effect of erlotinib in GBM EGFR+ cells by modifying STAT3 phosphorylation status. Taken together, we report an in vitro tissue engineered platform to monitor signaling associated with poor response to targeted inhibitors in GBM.


Sign in / Sign up

Export Citation Format

Share Document