Assessment of Bone Regeneration Using Tooth Ash and Injectable Platelet Rich Fibrin: A Microcomputed Tomographic (CT) Analysis

2021 ◽  
Vol 11 (5) ◽  
pp. 793-804
Author(s):  
Saleh Alshihri ◽  
Mohammed Kindi ◽  
Randa Alfotawi ◽  
Marium Al Hindi ◽  
Osama Alghamdi ◽  
...  

Introduction: One of the main challenge of bone graft or socket preservation in particular is to get good quality and quantity of bone in short time prior to implant bed preparation. The buccal bone at the crest of the ridge is a very thin bone and usually resorb faster than the rest of alveolar bone which may hinder an optimum dento-osseous implant insertion. The purpose of this study will be to assess the bone regeneration capabilities of Tooth Ash Particles (TAP) with injectable Plasma Rich Fibrin (i-PRF) and Tooth Ash Particles (TAP) alone at defects created in the goat mandible bone using micro-computed tomographic (micro-CT). Materials and Methods: A total, 54 bone defect (5 mm × 8 mm) were performed in the 18 goats. The created defect received different treatment (Tx): Tx.A: Unfilled defect (allow natural bone regeneration; Tx.B: Tooth Ash particle (TAP) alone; Tx.C: Tooth Ash + injectable PRF (TAP/i-PRF). Six goats, were sacrificed at different time points:Group 1: at 2nd week, Group2: at 5th week and Group3 at 8th week. The newly formed bone (NFB) was analyzed using micro-CT at different time points. Quantitative and qualitative assessment were carried out namely; the volume of new bone formation (NF-BV) within the defect and its mineral density (NF-BMD), Trabecular Thickness (Tb Th), Trabecular Number (Tb N) and Trabecular Separation (Tb Sp). Result: By 8th week, the mean NF-BV was 69.482 ± 6.554 mm3 (cubic millimeter), 65.872±6.804 mm3, 26.820±14.643 mm3, while the mean NF-BMD was 0.417±0.119g/mm3, 0.786±0.036 g/mm3, 0.805±0.033 g/mm3 for the defects which received Tx.C, Tx.B and Tx.A respectively. At 8th weekTb Th of NFB was 0.612±0.168, 0.913±0.112, and 0.701 ±0.126, Trabecular Number of NFB was 2.062±0.946, 1.002±0.155, and 1.816±2.042 and, Trabecular Separation of NFB was 0.330 ±0.131, 0.559 ±0.110, and 0.495 ±0.258 for the defects which received Tx.A, Tx.B and Tx.C respectively. Conclusion: Micro-CT study demonstrated that tooth ash particles mixed with injectable Platelet Rich Fibrin (i-PRF) on mandibular bone defect in goat’s model, resulting in new bone with significantly higher volume, mineral density and less remodeling rate when compared with normal bone regeneration of unfilled defects.

2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Weizong Weng ◽  
Shaojun Song ◽  
Liehu Cao ◽  
Xiao Chen ◽  
Yuanqi Cai ◽  
...  

Bioartificial bone tissue engineering is an increasingly popular technique to repair bone defect caused by injury or disease. This study aimed to investigate the feasibility of PLLA/PCL (poly-L-lactic acid/polycaprolactone) by a comparison study of PLLA/PCL and PLLA scaffolds applied in bone regeneration. Thirty healthy mature New Zealand rabbits on which 15 mm distal ulna defect model had been established were selected and then were divided into three groups randomly: group A (repaired with PLLA scaffold), group B (repaired with PLLA/PCL scaffold), and group C (no scaffold) to evaluate the bone-remodeling ability of the implants. Micro-CT examination revealed the prime bone regeneration ability of group B in three groups. Bone mineral density of surgical site in group B was higher than group A but lower than group C. Meanwhile, the bone regeneration in both groups A and B proceeded with signs of inflammation for the initial fast degradation of scaffolds. As a whole, PLLA/PCL scaffoldsin vivoinitially degrade fast and were better suited to repair bone defect than PLLA in New Zealand rabbits. Furthermore, for the low mineral density of new bone and rapid degradation of the scaffolds, more researches were necessary to optimize the composite for bone regeneration.


2022 ◽  
Vol 12 (2) ◽  
pp. 316-322
Author(s):  
Meng-Sheng Song ◽  
Xiao Yu ◽  
Peng-Ze Rong ◽  
Qing-Jiang Pang

Objectives: To compare the effects of signaling-selective parathyroid hormone analogs [G1, R19]hPTH(1–28) [GR(1–28)] and [G1, R19]hPTH(1–34) [GR(1–34)] on osteoporotic osteocyte apoptosis, and to explore the mechanism of the anti-osteoporotic difference. Methods: The osteoporosis model was established in eighty adult female C57BL/6 mice aged 12 weeks. The mice were subcutaneously administered with GR(1–28) and GR(1–34) 5 days per week for 8 weeks. Bilateral femur samples were collected at 4 and 8 weeks, and micro-computed tomography (CT), H&E staining and immunohistochemical staining analyses were performed. Results: From micro-CT analysis, GR(1–34) increased proximal femoral bone mineral density (BMD) and relative bone volume (BV/TV), which was higher than GR(1–28) did. In addition, more trabecular number (Tb.N), thinner trabecular thickness (Tb.Th) and wider trabecular separation (Tb.Sp) were measured at week 8 using GR(1–34). From H&E and immunohistochemical staining, a stronger apoptosis inhibition was induced by GR(1–34) with more Bcl-2 secretion but less Bax expression, as opposed to GR(1–28). Conclusions: GR(1–34) shows better anti-osteoporotic effects than GR(1–28), which appears to be attributed to the activation of the PLC-independent PKC signaling pathway triggered by the former, inhibiting osteocyte apoptosis through up-regulation of Bcl-2 and down-regulation of Bax to increase bone mass and improving trabecular bone microstructure to enhance bone quality by reducing trabecular number, increasing trabecular thickness and trabecular space.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0045
Author(s):  
Michelle Son ◽  
Brent Munroe

Category: Hindfoot Introduction/Purpose: Obtaining and maintaining compression at an arthrodesis site is a key factor in achieving successful bony union. Bones, like other collagen containing tissues, are known to exhibit viscoelastic properties that may lead to stress relaxation at the arthrodesis site. The viscoelastic properties of the hindfoot bones when subjected to compression (as occurs during fusion surgery) are not known. The objective of this study was to quantify the viscoelastic properties of hindfoot bones under compression by measuring the time course of stress relaxation. Methods: 19 cadaveric human bone cubes 10 mm on each side consisting of trabecular and subchondral bone were cut from the hindfoot bones including the talus, calcaneus, and distal tibia. Each cube was scanned with micro computed tomography (µCT) to quantify bone volume/total volume ratio (BV/TV), trabecular thickness, trabecular separation, trabecular number, and connectivity density. Each specimen was then immersed in a saline bath and compressed 1 mm at a strain rate of 1 mm/s using an MTS machine (Fig 1). This compressed position was then held for 3 hours while the load was recorded. Following the compression test, each specimen was re-scanned with µCT. Results: Two distinct patterns of load relaxation were found. The first consisted of a uniform exponential decay. The second had a similar exponential decay but included a plateau occurring between 1-6 minutes. This second pattern was reflected in the average fractional load relaxation graph (Fig 2). The average peak load was 24.14 kg (SD ± 15.07 kg) and average end relaxation was 2.93 kg (SD ± 3.81 kg). The average time to achieve 95% decay in total load was 34.7 min (SD ± 29.1 min) although removing some outliers, it decreased to 24.9 min (SD ± 18.4 min) which is more representative of the overall data. Averages of BV/TV, trabecular thickness, and trabecular separation increased after stress relaxation while average connectivity density and trabecular number decreased. Conclusion: These data suggest that, due to the viscoelastic properties of bone, approximately 95% of an applied compressive load generated by a fixed displacement is lost within the first 30 minutes. Applied clinically, these findings may have a significant impact on the optimal surgical technique used for osteosynthesis and arthrodesis. Specifically, these data call into question whether the compression applied during surgery can be maintained throughout the healing phase without the application of continuous compression via an external fixator or internal continuous compression device. At minimum, these data suggest that lag or compression screws should be retightened prior to wound closure.


2016 ◽  
Vol 10 (02) ◽  
pp. 264-276 ◽  
Author(s):  
Swati Das ◽  
Rajesh Jhingran ◽  
Vivek Kumar Bains ◽  
Rohit Madan ◽  
Ruchi Srivastava ◽  
...  

ABSTRACT Objectives: This study was primarily designed to determine the clinico-radiographic efficacy of platelet-rich fibrin (PRF) and beta-tri-calcium phosphate with collagen (β-TCP-Cl) in preserving extraction sockets. Materials and Methods: For Group I (PRF), residual sockets (n = 15) were filled with autologous PRF obtained from patients’ blood; and for Group II (β-TCP-Cl), residual sockets (n = 15) were filled with β-TCP-Cl. For the sockets randomly selected for Group II (β-TCP-Cl), the reshaped Resorbable Tissue Replacement cone was inserted into the socket. Results: Clinically, there was a significantly greater decrease in relative socket depth, but apposition in midcrestal height in Group II (β-TCP-Cl) as compared to Group I (PRF), whereas more decrease in buccolingual width of Group I (PRF) than Group II (β-TCP-Cl) after 6 months. Radiographically, the mean difference in socket height, residual ridge, and width (coronal, middle, and apical third of socket) after 6 months was higher in Group I (PRF) as compared to Group II (β-TCP-Cl). The mean density (in Hounsfield Units) at coronal, middle, and apical third of socket was higher in Group I (PRF) as compared to Group II (β-TCP-Cl). There were statistically significant apposition and resorption for Group I (PRF) whereas nonsignificant resorption and significant apposition for Group II (β-TCP-Cl) in buccal and lingual/palatal cortical plate, respectively, at 6 months on computerized tomography scan. Conclusion: The use of either autologous PRF or β-TCP-Cl was effective in socket preservation. Results obtained from PRF were almost similar to β-TCP-Cl; therefore being autologous, nonimmune, cost-effective, easily procurable regenerative biomaterial, PRF proves to be an insight into the future biofuel for regeneration.


2009 ◽  
Vol 89 (1) ◽  
pp. 77-81 ◽  
Author(s):  
W.-W. Hu ◽  
B.B. Ward ◽  
Z. Wang ◽  
P.H. Krebsbach

Because bone reconstruction in irradiated sites is less than ideal, we applied a regenerative gene therapy method in which a cell-signaling virus was localized to biomaterial scaffolds to regenerate wounds compromised by radiation therapy. Critical-sized defects were created in rat calvariae previously treated with radiation. Gelatin scaffolds containing lyophilized adenovirus encoding BMP-2 (AdBMP-2) or freely suspended AdBMP-2 were transplanted. Lyophilized AdBMP-2 significantly improved bone quality and quantity over free AdBMP-2. Bone mineral density was reduced after radiotherapy. Histological analyses demonstrated that radiation damage led to less bone regeneration. The woven bone and immature marrow formed in the radiated defects indicated that irradiation retarded normal bone development. Finally, we stored the scaffolds with lyophilized AdBMP-2 at −80°C to determine adenovirus stability. Micro-CT quantification demonstrated no significant differences between bone regeneration treated with lyophilized AdBMP-2 before and after storage, suggesting that virus-loaded scaffolds may be convenient for application as pre-made constructs.


2016 ◽  
Vol 40 (6) ◽  
pp. 496-502 ◽  
Author(s):  
S Hayashi-Sakai ◽  
N Numa-Kinjoh ◽  
M Sakamoto ◽  
J Sakai ◽  
J Matsuyama ◽  
...  

Objective: Most cases of hypophosphatasia (HPP) exhibit early loss of primary teeth. Results of micro-computed tomography (micro-CT) analysis of teeth with HPP have not yet been reported. The purpose of the present study was to describe the size and mineral density distribution and mapping of exfoliated teeth with HPP using micro CT. Study design: Seven exfoliated teeth were obtained from a patient with HPP. Exfoliated teeth sizes were measured on micro CT images and mineral densities of the mandibular primary central incisors were determined. Results: Partial dentures were fabricated for the patient to replace the eight primary teeth which had exfoliated. Most primary teeth sizes were within the normal range. The mean values of enamel and dentin mineral densities in teeth with HPP were 1.35 and 0.88 g/cm3, respectively, in the mandibular primary central incisors. Conclusion: Mineral density distribution and mapping revealed that the values in teeth with HPP were lower than the homonymous teeth controls in all regions from the crown to apex. Furthermore, it was demonstrated that the differences between HPP and controls were larger on the crown side and the differences tended to converge on the apex side. These results suggested that the present patient showed mild hypomineralization in the primary dentition.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Matthias Pumberger ◽  
Ahi Sema Issever ◽  
Torsten Diekhoff ◽  
Christin Schwemmer ◽  
Susanne Berg ◽  
...  

Abstract Background Osteoporosis is characterized by a deterioration of bone structure and quantity that leads to an increased risk of fractures. The primary diagnostic tool for the assessment of the bone quality is currently the dual-energy X-ray absorptiometry (DXA), which however only measures bone quantity. High-resolution multidetector computed tomography (HR-MDCT) offers an alternative approach to assess bone structure, but still lacks evidence for its validity in vivo. The objective of this study was to assess the validity of HR-MDCT for the evaluation of bone architecture in the lumbar spine. Methods We conducted a prospective cross-sectional study to compare the results of preoperative lumbar HR-MDCT scans with those from microcomputed tomography (μCT) analysis of transpedicular vertebral body biopsies. For this purpose, we included patients undergoing spinal surgery in our orthopedic department. Each patient underwent preoperative HR-MDCT scanning (L1-L4). Intraoperatively, transpedicular biopsies were obtained from intact vertebrae. Micro-CT analysis of these biopsies was used as a reference method to assess the actual bone architecture. HR-MDCT results were statistically analyzed regarding the correlation with results from μCT. Results Thirty-four patients with a mean age of 69.09 years (± 10.07) were included in the study. There was no significant correlation for any of the parameters (bone volume/total volume, trabecular separation, trabecular thickness) between μCT and HR-MDCT (bone volume/total volume: r = − 0.026 and p = 0.872; trabecular thickness: r = 0.074 and r = 6.42; and trabecular separation: r = − 0.18 and p = 0.254). Conclusion To our knowledge, this is the first study comparing in vivo HR-MDCT with μCT analysis of vertebral biopsies in human patients. Our findings suggest that lumbar HR-MDCT is not valid for the in vivo evaluation of bone architecture in the lumbar spine. New diagnostic tools for the evaluation of osteoporosis and preoperative orthopedic planning are urgently needed.


2019 ◽  
Vol 16 (6) ◽  
pp. 530-537 ◽  
Author(s):  
Elna Paul Chalisserry ◽  
Seung Yun Nam ◽  
Sukumaran Anil

Background: Enhancement of the bone regenerative capacity of the bone substitutes could be achieved by incorporating bioactive agents such as proteins, and different drugs. Simvastatin, an inhibitor of cholesterol synthesis, stimulates bone formation by enhancing the expression of Bone Morphogenetic Protein-2 (BMP-2) in osteoblasts. Objective: The objective of the study is to evaluate bone regeneration following simvastatin loaded nano-hydroxyapatite scaffold in the bone defect created on the femoral condyle of rabbits. Methods: Twelve adult, New Zealand white rabbits were used in the study. Twenty-four defects of size 5x8 mm were created on the lateral aspect of the femoral condyle. The defects were filled with either Nano-Hydroxyapatite (nHA) particles alone or nHA with Simvastatin (SIM). The condyles were retrieved after 8 weeks and analyzed using micro CT and histology. Results: The Bone Mineral Density (BMD) was significantly higher for the defects filled with SIM loaded nHA compared to the nHA site. Micro CT showed a significantly higher bone volume in the defects filled with Simvastatin loaded site compared to the control site. Quantitative analysis of the histologic sections also showed significantly higher bone volume in the defects filled with SIM loaded nHA (57.2±4.8) compared to nHA alone (50.1±5.5). Conclusion: Based on the results, it can be concluded that local delivery of simvastatin enhanced the bone regeneration in rabbit femoral condyle. Simvastatin could be used as an activator to enhance bone regeneration in bone defects along with hydroxyapatite ceramics.


2014 ◽  
Vol 6;17 (6;12) ◽  
pp. E737-E745
Author(s):  
Kyung-Hoon Kim

Background: Polymethyl methacrylate (PMMA) bone cement is widely used for osteoplasty. However, previous studies have demonstrated the adverse effects of PMMA due to its excessive stiffness and heat production. Recently, calcium phosphate cement (CPC) that overcomes those negative effects has been successfully applied in osteoplasty. The potential problem of CPC is markedly less initial stiffness. It leads to progressive, repeated collapse in the treated vertebra before CPC has been replaced by new bone that would provide substantial improvement in compressive strength and stiffness. The activated platelets in platelet-rich plasma (PRP) release a high concentration of growth factors which play an important role in bone healing. Objective: To investigate whether PRP could accelerate the osteoconduction of CPC and enhance the bone strength of the treated vertebra in an animal model. Study Design: Controlled animal study. Setting: Laboratory animal study, Methods: Thirty-two female Sprague-Dawley rats were ovariectomized at 8 weeks of age. After 3 months, they were randomly divided into 4 groups and received cement augmentation in the fifth caudal spine with different filler materials; sham-operated rats (S), PMMA (P), CPC (C), and CPC + PRP (CP). Bone mineral density (BMD) and trabecular type-associated morphological parameters, including trabecular bone volume fraction and trabecular thickness in the augmented caudal spine, were evaluated by micro-computed tomography (mirco-CT) 2 weeks after the cementoplasty. Histological analysis was also performed to compare the bone regeneration. Results: The trabecular bone volume fraction in the CP group was significantly greater than those of all the other groups. Trabecular thickness was higher in the CP group than the S and P groups. This augmented trabecular structure in the CP group accordingly showed higher BMD. Histological evaluations showed significantly more bone regeneration in the CP group. Limitations: There has been a concern that the effect of PRP would be dependent on the species, and might show different results in humans. Baseline values of micro-CT analysis were not measured, which could have provided exact evidence of the changes in trabecular microarchitecture parameters and cement resorption profiles. Finally, caudal vertebrae with filler materials used in biological study should have been compared by their mechanical properties using biomechanical evaluations for a more coherent study, which was not possible due to technical problems. Conclusions: Incorporating PRP into CPC could accelerate osteoconduction in the augmented vertebra leading to improvement of trabecular bone microarchitecture and BMD in rats. Key words: Bone mineral density, calcium phosphates, cementoplasty, histology, osteoconduction, osteoporosis, platelet-rich plasma, polymethyl methacrylate, vertebra


Sign in / Sign up

Export Citation Format

Share Document