Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications

2015 ◽  
Vol 15 (10) ◽  
pp. 7472-7475 ◽  
Author(s):  
Dongsuk Jun ◽  
Soojung Kim ◽  
Wonchul Choi ◽  
Junsoo Kim ◽  
Taehyoung Zyung ◽  
...  

We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3154
Author(s):  
Kony Chatterjee ◽  
Tushar K. Ghosh

Since prehistoric times, textiles have served an important role–providing necessary protection and comfort. Recently, the rise of electronic textiles (e-textiles) as part of the larger efforts to develop smart textiles, has paved the way for enhancing textile functionalities including sensing, energy harvesting, and active heating and cooling. Recent attention has focused on the integration of thermoelectric (TE) functionalities into textiles—making fabrics capable of either converting body heating into electricity (Seebeck effect) or conversely using electricity to provide next-to-skin heating/cooling (Peltier effect). Various TE materials have been explored, classified broadly into (i) inorganic, (ii) organic, and (iii) hybrid organic-inorganic. TE figure-of-merit (ZT) is commonly used to correlate Seebeck coefficient, electrical and thermal conductivity. For textiles, it is important to think of appropriate materials not just in terms of ZT, but also whether they are flexible, conformable, and easily processable. Commercial TEs usually compromise rigid, sometimes toxic, inorganic materials such as bismuth and lead. For textiles, organic and hybrid TE materials are more appropriate. Carbon-based TE materials have been especially attractive since graphene and carbon nanotubes have excellent transport properties with easy modifications to create TE materials with high ZT and textile compatibility. This review focuses on flexible TE materials and their integration into textiles.


2007 ◽  
Vol 1020 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
C. C. Smith ◽  
B. Zheng ◽  
...  

AbstractSemiconducting â-Zn4Sb3and ZrNiSn-based half-heusler compound thin films were prepared by co-evaporation for the application of thermoelectric (TE) materials. High-purity solid zinc and antimony were evaporated by electron beam to grow the â-Zn4Sb3thin film while high-purity zirconium powder and nickel tin powders were evaporated by electron beam to grow the ZrNiSn-based half-heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardments for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardments. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam can cause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ù-method measurement system to measure the cross-plane thermal conductivity ,the Van der Pauw measurement system to measure the cross-plane electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.


2019 ◽  
Vol 7 (9) ◽  
pp. 2646-2652 ◽  
Author(s):  
Khak Ho Lim ◽  
Ka Wai Wong ◽  
Yu Liu ◽  
Yu Zhang ◽  
Doris Cadavid ◽  
...  

The introduction of nonmetal nanoinclusions within Ag2Se results in an interphase band bending that promotes electron filtering and increase Seebeck coefficient. Similar loading of metal nanoinclusions provided an opposite effect-modulating free carrier concentration, as characterized by superior electrical conductivities and lower Seebeck coefficients.


Author(s):  
Shrikant Saini ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
Shuzi Hayase ◽  
Koji Miyazaki

Abstract Thermoelectric materials can convert thermal energy into electrical energy without any moving part which leads its path of application to the era of printed and flexible electronics. CsSnI3 perovskite can be a promising thermoelectric material for the next-generation energy conversion due to its intrinsic ultra-low thermal conductivity and large Seebeck coefficient but enhancement of electrical conductivity is still required. CsSnI3 can be prepared by wet process which can reduce the cost of flexible thermoelectric module. In this work, CsSnI3 thin films were fabricated by spin coating wet process. Thin films were structurally and chemically characterized using XRD and SEM. Thermoelectric properties such as electrical conductivity, Seebeck coefficient, and thermal conductivity were measured at 300 K. Uni-leg thermoelectric modules were fabricated on a glass substrate using CsSnI3 thin films. The maximum output is about 0.8 nW for 5 legs (25 mm × 3 mm × 600 nm) modules for the temperature difference of about 5°C. These results will open a new pathway to thermoelectric modules for flexible electronics in spite of low output power.


2020 ◽  
Vol 8 (9) ◽  
pp. 4931-4937 ◽  
Author(s):  
Zhiwei Huang ◽  
Dongyang Wang ◽  
Caiyun Li ◽  
Jinfeng Wang ◽  
Guangtao Wang ◽  
...  

CdTe alloying dramatically enhanced the thermoelectric performance of p-type PbSe by enhancing Seebeck coefficients and reducing electronic thermal conductivity.


2013 ◽  
Vol 667 ◽  
pp. 165-171
Author(s):  
Zurianti A. Rahman ◽  
Khaulah Sulaiman ◽  
Mohamad Rusop ◽  
Ahmad Shuhaimi

The studies on the thermoelectric (TE) properties of 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) and a conducting polymer Poly(ethylenedioxythiopene): poly(styrenesulfonate) (PEDOT:PSS)–PH1000 are presented. PTCDA and PEDOT:PSS have been used as a potential n-type material and a p-type material for the TE device, respectively. The Seebeck coefficients, open circuit voltage and the output power have been obtained for the fabricated TE device. The Seebeck effect was observed on this TE device where the output power in the range of 1 nW/cm2 to 5 nW/cm2,was successfully deduced from this TE device. It was found that the association of PEDOT:PSS and PTCDA have been acting well in this TE device. However, a higher TE performance, in the future could be developed, by applying a thermal treatment and introducing a suitable dopant to this n-type material which may increase the mobility of the electrons and the Seebeck coefficient.


2012 ◽  
Vol 260-261 ◽  
pp. 34-39
Author(s):  
Min Hee Hong ◽  
Chang Sun Park ◽  
Yong June Choi ◽  
Hong Sup Lee ◽  
Hyung Ho Park

The efficiency of a thermoelectric device depends on material properties through the figure of merit, Z = σS2/κ, where σ, S, and κ are electrical conductivity, Seebeck coefficient, and thermal conductivity, respectively. To maximize the thermoelectric figure of merit of a material, high electrical conductivity, high Seebeck coefficient, and low thermal conductivity are required. This work has focused on the synthesis of a mesoporous titania films for its application in thermoelectric generation. The mesoporous titania film was synthesized with titanium tetraisopropoxide. The triblock copolymer, Pluronic P-123 (EO20PO70EO20) was used as surfactant in 1-propanol. As a result, an improvement of electrical conductivity and reduced annealing with a lowering of thermal conductivity by distributions of pores were found to be effective to enhance the thermoelectric property.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5773
Author(s):  
Giovanna Latronico ◽  
Paolo Mele ◽  
Cristina Artini ◽  
Pietro Manfrinetti ◽  
Sian Wei Pan ◽  
...  

Filled skutterudites are currently studied as promising thermoelectric materials due to their high power factor and low thermal conductivity. The latter property, in particular, can be enhanced by adding scattering centers, such as the ones deriving from low dimensionality and the presence of interfaces. This work reports on the synthesis and characterization of thin films belonging to the Smy(FexNi1-x)4Sb12-filled skutterudite system. Films were deposited under vacuum conditions by the pulsed laser deposition (PLD) method on fused silica substrates, and the deposition temperature was varied. The effect of the annealing process was studied by subjecting a set of films to a thermal treatment for 1 h at 423 K. Electrical conductivity σ and Seebeck coefficient S were acquired by the four-probe method using a ZEM-3 apparatus performing cycles in the 348–523 K temperature range, recording both heating and cooling processes. Films deposited at room temperature required three cycles up to 523 K before being stabilized, thus revealing the importance of a proper annealing process in order to obtain reliable physical data. XRD analyses confirm the previous result, as only annealed films present a highly crystalline skutterudite not accompanied by extra phases. The power factor of annealed films is shown to be lower than in the corresponding bulk samples due to the lower Seebeck coefficients occurring in films. Room temperature thermal conductivity, on the contrary, shows values comparable to the ones of doubly doped bulk samples, thus highlighting the positive effect of interfaces on the introduction of scattering centers, and therefore on the reduction of thermal conductivity.


2012 ◽  
Vol 1456 ◽  
Author(s):  
J. S. Sadhu ◽  
T. Hongxiang ◽  
J. Ma ◽  
J. Kim ◽  
S. Sinha

ABSTRACTWe report simultaneous measurements of thermal conductivity and Seebeck coefficient on array-scale silicon nanowires fabricated by metal assisted chemical etching. The measurements are conducted on the solid and the mesoporous nanowire arrays (NWAs) obtained from etching 1 ohm-cm and 0.002 ohm-cm Si substrates respectively. We demonstrate control on sidewall morphology and doping of the arrays that have an aspect ratio up to 20 and 30 % areal coverage. We employ differential frequency-domain measurements, separately on the array and the corresponding substrate to obtain the temperature drop and Seebeck voltage contribution of the nanowire array. The technique is validated by measurements on bulk silicon across the resistivity 0.002-1 ohm-cm. The Seebeck measurements reveal quenching of the phonon drag in the nanowires in comparison to the bulk in the measured temperature range of 300 K- 500 K. The Seebeck coefficient shows a ~18 % decrease in the solid NWAs and ~22 % increase in the mesoporous NWAs at room temperature. The thermal conductivity is close to Casimir limit for the solid wires while it drops to ~2.5 W/mK in the mesoporous nanowires.


Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 342-346 ◽  
Author(s):  
Boyang Yu ◽  
Jiangjiang Duan ◽  
Hengjiang Cong ◽  
Wenke Xie ◽  
Rong Liu ◽  
...  

Low-grade heat (below 373 kelvin) is abundant and ubiquitous but is mostly wasted because present recovery technologies are not cost-effective. The liquid-state thermocell (LTC), an inexpensive and scalable thermoelectric device, may be commercially viable for harvesting low-grade heat energy if its Carnot-relative efficiency (ηr) reaches ~5%, which is a challenging metric to achieve experimentally. We used a thermosensitive crystallization and dissolution process to induce a persistent concentration gradient of redox ions, a highly enhanced Seebeck coefficient (~3.73 millivolts per kelvin), and suppressed thermal conductivity in LTCs. As a result, we achieved a high ηr of 11.1% for LTCs near room temperature. Our device demonstration offers promise for cost-effective low-grade heat harvesting.


Sign in / Sign up

Export Citation Format

Share Document