Uni-Leg Thermoelectric Module Comprised by Coated Hybrid-Perovskite Thin Film

Author(s):  
Shrikant Saini ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
Shuzi Hayase ◽  
Koji Miyazaki

Abstract Thermoelectric materials can convert thermal energy into electrical energy without any moving part which leads its path of application to the era of printed and flexible electronics. CsSnI3 perovskite can be a promising thermoelectric material for the next-generation energy conversion due to its intrinsic ultra-low thermal conductivity and large Seebeck coefficient but enhancement of electrical conductivity is still required. CsSnI3 can be prepared by wet process which can reduce the cost of flexible thermoelectric module. In this work, CsSnI3 thin films were fabricated by spin coating wet process. Thin films were structurally and chemically characterized using XRD and SEM. Thermoelectric properties such as electrical conductivity, Seebeck coefficient, and thermal conductivity were measured at 300 K. Uni-leg thermoelectric modules were fabricated on a glass substrate using CsSnI3 thin films. The maximum output is about 0.8 nW for 5 legs (25 mm × 3 mm × 600 nm) modules for the temperature difference of about 5°C. These results will open a new pathway to thermoelectric modules for flexible electronics in spite of low output power.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Shrikant Saini ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
Shuzi Hayase ◽  
Koji Miyazaki

Abstract The direct conversion of thermal energy into electricity is possible by thermoelectric effect. CsSnI3 perovskite has shown a way with its intrinsic ultralow thermal conductivity and large Seebeck coefficient. In this work, CsSnI3 thin films were optimized. Thin films were structurally and chemically characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Thermoelectric properties such as electrical conductivity, Seebeck coefficient, and thermal conductivity were measured near room temperature (300 K). CsSnI3 thin films unileg thermoelectric modules were fabricated on a glass substrate. The maximum output power is obtained about 0.8 nW for five legs (25 mm × 3 mm × 600 nm) modules for the temperature difference of about 5 °C.


2007 ◽  
Vol 1020 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
C. C. Smith ◽  
B. Zheng ◽  
...  

AbstractSemiconducting â-Zn4Sb3and ZrNiSn-based half-heusler compound thin films were prepared by co-evaporation for the application of thermoelectric (TE) materials. High-purity solid zinc and antimony were evaporated by electron beam to grow the â-Zn4Sb3thin film while high-purity zirconium powder and nickel tin powders were evaporated by electron beam to grow the ZrNiSn-based half-heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardments for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardments. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam can cause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ù-method measurement system to measure the cross-plane thermal conductivity ,the Van der Pauw measurement system to measure the cross-plane electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Piya Jitthammapirom ◽  
Rachsak Sakdanuphab ◽  
Aparporn Sakulkalavek

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.


2010 ◽  
Vol 1267 ◽  
Author(s):  
John Chacha ◽  
S. Budak ◽  
Cydale Smith ◽  
Marcus Pugh ◽  
Kudus Ogbara ◽  
...  

AbstractThe performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. We have prepared 100 alternating multi-nano layer of SiO2/SiO2+Cu superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ions bombardments have been performed at the different fluences using the AAMU Pelletron ion beam accelerator to make quantum clusters in the multi-layer superlattice thin films to decrease the cross plane thermal conductivity increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric thin films before and after Si ion bombardments we have measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences.


2008 ◽  
Vol 1100 ◽  
Author(s):  
Sadik Guner ◽  
Satilmis Budak ◽  
Claudiu I Muntele ◽  
Daryush Ila

AbstractMonolayer thin films of YbBiPt and YBiPt have been produced with 560 nm and 394 nm thick respectively in house and their thermoelectric properties were measured before and after MeV ion bombardment. The energy of the ions were selected such that the bombarding Si ions stop in the silicon substrate and deposit only electronic energy by ionization in the deposited thin film. The bombardment by 5.0 MeV Si ions at various fluences changed the homogeneity as well as reducing the internal stress in the films thus affecting the thermal, electrical and Seebeck coefficient of thin films. The stoichiometry of the thin films was determined using Rutherford Backscattering Spectrometry, the thickness has been measured using interferometry and the electrical conductivity was measured using Van der Pauw method. Thermal conductivity of the thin films was measured using an in-house built 3ω thermal conductivity measurement system. Using the measured Seebeck coefficient, thermal conductivity and electrical conductivity we calculated the figure of merit (ZT). We will report our findings of change in the measured figure of merit as a function of bombardment fluence.


2001 ◽  
Vol 691 ◽  
Author(s):  
Bao Yang ◽  
Jian L. Liu ◽  
Kang L. Wang ◽  
Gang Chen

ABSTRACTIn this paper, a set of methods is developed to measure the Seebeck coefficient, electrical conductivity, and thermal conductivity in the cross-plane direction of thin films. The method employs microfabricated heaters, voltage and temperature sensors, and phase-lock amplifiers to determine the temperature and Seebeck voltage oscillation in the cross-plane direction of the samples, from which the thermal conductivity and Seebeck coefficient of thin films are determined simultaneously. The cross-plane electrical conductivity is also measured by a modified transmission line model. These methods are applied to Si/Ge superlattices grown by molecular beam epitaxy.


2016 ◽  
Vol 675-676 ◽  
pp. 679-682 ◽  
Author(s):  
Kunchit Singsoog ◽  
Chanchana Thanachayanont ◽  
Anek Charoenphakdee ◽  
Tosawat Seetawan

The Ca3Co4O9 (CCO) and Sr0.87La0.13TiO3 (SLTO) are good property of oxide thermoelectric (TE) materials. They synthesized by solid state reaction (SSR) method to study thermoelectric properties and fabrication of thermoelectric module. It was found that, synthesis of CCO shows that Seebeck coefficient, electrical resistivity, thermal conductivity and values are 130 μV K–1, 8.31 mΩ cm, 0.82 W m–1 K–1 and 0.08, respectively at 473 K. The Seebeck coefficient, electrical resistivity, thermal conductivity and ZT values of SLTO are –359 μV K–1, 2.9 mΩ m, 18.09 W m–1 K–1 and 1.13×10–3, respectively at 473 K. TE modules of CCO and SLTO were fabricated by ultra sonic soldering method. The power generation of TE modules were measured with temperature difference (ΔT) of 10–180 K. The 1 pair and 2 pairs TE modules for a maximum power generation of matching load are 19 k and 30 k, respectively. The maximum output power of 2 pairs TE module is larger than 1 pair TE module about two times.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2021 ◽  
Vol 317 ◽  
pp. 28-34
Author(s):  
Joon Hoong Lim

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.


2021 ◽  
Author(s):  
Bo Feng

Abstract The effect of Ti doped at Cu site on the thermoelectric properties of BiCuSeO was studied by experimental method and first principles calculation. The results show that Ti doping can cause the lattice contraction and decrease the lattice constant. Ti doping can increase the band gap and lengthen the Cu/Ti-Se bond, resulting in the decrease of carrier concentration. Ti doping can reduce the effective mass and the Bi-Se bond length, correspondingly improve the carrier mobility. Ti doping can decrease the density of states of Cu-3d and Se-4p orbitals at the top of valence band, but Ti-4p orbitals can obviously increase the density of states at the top of valence band and finally increase the electrical conductivity in the whole temperature range. With the decrease of effective mass, Ti doping would reduce the Seebeck coefficient, but the gain effect caused by the increase of electrical conductivity is more than the benefit reduction effect caused by the decrease of Seebeck coefficient, and the power factor shows an upward trend. Ti doping can reduce Young's modulus, lead to the increase of defect scattering and strain field, correspondingly reduce the lattice thermal conductivity and total thermal conductivity. It is greatly increased for the ZT values in the middle and high temperature range, with the highest value of 1.04 at 873 K.


Sign in / Sign up

Export Citation Format

Share Document