Iron Oxide Nanomaterials for the Removal of Cr(VI) and Pb(II) from Contaminated River After Mariana Mining Disaster

2021 ◽  
Vol 21 (3) ◽  
pp. 1711-1720
Author(s):  
Thainá Gusmão Andrade ◽  
Mayra Soares Santos ◽  
Luiz Fernando Oliveira Maia ◽  
Tamise Emanuele Oliveira de Aquino ◽  
Lucas Zeferino da Silva ◽  
...  

If not properly treated, water contaminated with chromium (Cr(VI)) and lead (Pb(II)) can cause severe damage to health due to the accumulation of those toxic metals in the human body. Therefore, in this work, three iron oxides, i.e., δ-FeOOH, cystine-functionalized δ-FeOOH (Cys-δ-FeOOH), and Fe3O4, were synthesized and used as adsorbents for Cr(VI) and Pb(II) in water. The results indicated that the Cr(VI) is best adsorbed on cys-δ-FeOOH followed by δ-FeOOH and Fe3O4. It was because of the enhanced interaction between Cr(VI) and the cysteine functional groups on the δ-FeOOH surface. The Cr(VI) adsorption capacity of cys-δ-FeOOH, δ-FeOOH, and Fe3O4 was 217, 14, and 8 mg g−1, respectively. On the other hand, Pb(II) was preferentially adsorbed directly on δ-FeOOH achieving a maximum Pb(II) adsorption capacity of 174 mg g−1. The Pb(II) adsorption capacity of cys-δ-FeOOH and Fe3O4 was 97 and 74 mg g−1, respectively. The Cr(VI) adsorption on cys-δ-FeOOH was best described by the Langmuir-Freundlich model, whereas Pb(II) adsorption on δ-FeOOH followed the Langmuir model. Both Cr(VI) and Pb(II) adsorption on the adsorbents was well-fitted to pseudo-second-order kinetics. The Cr(VI) was more quickly adsorbed by cys-δ-FeOOH (h0 = 0.10 mg g−1 min−1) while the initial adsorption rate of Pb(II) onto δ-FeOOH was significantly faster (h0 = 16.34 mg g−1 min−1). Finally, the synthesized adsorbents were efficient to remove Cr(VI) and Pb(II) from water samples of the Doce river after the environmental disaster of Mariana city, Brazil, thus showing its applicability to remediate real water samples.

2005 ◽  
Vol 23 (4) ◽  
pp. 289-302 ◽  
Author(s):  
Elio E. Gonzo ◽  
Luis F. Gonzo

A pseudo-second-order rate equation describing the kinetic adsorption of phenol onto peanut shell acid-activated carbon at different initial concentrations, carbon dosages and particle sizes has been developed. The adsorption kinetics were followed on the basis of the amount of phenol adsorbed at various time intervals at 22°C. The rate constant and the equilibrium adsorption capacity were calculated. From these parameters, empirical correlations for predicting the equilibrium adsorption capacity as a function of the C0/D ratio, and for estimating the rate constant as a function of the relation D/(C0dp)0.5, were derived. This allowed a general rate expression for design purposes to be obtained which was valid for C0/D ≤ 1.5. The operation line for each case studied was constructed and the equilibrium adsorption capacity obtained. A comparison was undertaken with the experimental adsorption isotherm as previously determined. The effect of the initial phenol concentration, the carbon dose and the particle size on the initial adsorption rate was also analyzed.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1173 ◽  
Author(s):  
Mariza Mone ◽  
Dimitra A. Lambropoulou ◽  
Dimitrios N. Bikiaris ◽  
George Kyzas

This work investigates the application of 5-hydroxymethyl-furfural (HMF) as a grafting agent to chitosan (CS). The material produced was further modified by cross-linking. Three different derivatives were tested with molecular ratios CS/HMF of 1:1 (CS-HMF1), 2:1 (CS-HMF2) and 10:1 mol/mol (CS-HMF3)) to remove Cu2+ and Cd2+ from aqueous solutions. CS-HMF derivatives were characterized both before, and after, metal ions adsorption by using scanning electron microscopy (SEM), as well as Fourier-transform infrared (FTIR) spectroscopy thermogravimetric analysis (TGA), and X-Ray diffraction analysis (XRD). The CS-HMF derivatives were tested at pH = 5 and showed higher adsorption capacity with the increase of temperature. Also, the equilibrium data were fitted to Langmuir (best fitting) and Freundlich model, while the kinetic data to pseudo-first (best fitting) and pseudo-second order equations. The Langmuir model fitted better (higher R2) the equilibrium data than the Freundlich equation. By increasing the HMF grafting from 130% (CS-HMF1) to 310% (CS-HMF3), an increase of 24% (26 m/g) was observed for Cu2+ adsorption and 19% (20 mg/g) for Cd2+. By increasing from T = 25 to 65 °C, an increase of the adsorption capacity (metal uptake) was observed. Ten reuse cycles were successfully carried out without significant loss of adsorption ability. The reuse potential was higher of Cd2+, but more stable desorption reuse ability during all cycles for Cu2+.


2020 ◽  
Vol 10 (10) ◽  
pp. 3437
Author(s):  
Jude Ofei Quansah ◽  
Thandar Hlaing ◽  
Fritz Ndumbe Lyonga ◽  
Phyo Phyo Kyi ◽  
Seung-Hee Hong ◽  
...  

We assessed the applicability of rice husk (RH) to remove cationic dyes, i.e., methylene blue (MB) and crystal violet (CV), from water. RH thermally treated at 75 °C showed a higher adsorption capacity than that at high temperatures (300–700 °C). For a suitable CV-adsorption model, a pseudo-first-order model for MB adsorption was followed by the kinetics adsorption process; however, a pseudo-second-order model was then suggested. In the qt versus t1/2 plot, the MB line passed through the origin, but that of CV did not. The Langmuir isotherm model was better than the Freundlich model for both dye adsorptions; furthermore, the adsorption capacity for MB and CV was 24.48 mg/g and 25.46 mg/g, respectively. Thermodynamically, the adsorption of both MB and CV onto the RH was found to be spontaneous and endothermic. This adsorption increased insignificantly on increasing the solution pH from 4 to 10. With an increasing dosage of the RH, there was an increase in the removal percentages of MB and CV; however, adsorption capacity per unit mass of the RH was observed to decrease. Therefore, we conclude that utilizing RH as an available and affordable adsorbent is feasible to remove MB and CV from wastewater.


2015 ◽  
Vol 72 (7) ◽  
pp. 1217-1225 ◽  
Author(s):  
Fan Zhang ◽  
Shengfu He ◽  
Chen Zhang ◽  
Zhiyuan Peng

Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 962
Author(s):  
Kuo-Yu Chen ◽  
Wei-Yu Zeng

Poly-γ-glutamate/apatite (PGA-AP) nanoparticles were prepared by chemical coprecipitation method in the presence of various concentrations of poly-γ-glutamate (γ-PGA). Powder X-ray diffraction pattern and energy-dispersive spectroscopy revealed that the main crystal phase of PGA-AP was hydroxyapatite. The immobilization of γ-PGA on PGA-AP was confirmed by Fourier transform infrared spectroscopy and the relative amount of γ-PGA incorporation into PGA-AP was determined by thermal gravimetric analysis. Dynamic light scattering measurements indicated that the particle size of PGA-AP nanoparticles increased remarkably with the decrease of γ-PGA content. The adsorption of aqueous Cu(II) onto the PGA-AP nanoparticles was investigated in batch experiments with varying contact time, solution pH and temperature. Results illustrated that the adsorption of Cu(II) was very rapid during the initial adsorption period. The adsorption capacity of PGA-AP nanoparticles for Cu(II) was increased with the increase in the γ-PGA content, solution pH and temperature. At a pH of 6 and 60 °C, a higher equilibrium adsorption capacity of about 74.80 mg/g was obtained. The kinetic studies indicated that Cu(II) adsorption onto PGA-AP nanoparticles obeyed well the pseudo-second order model. The Langmuir isotherm model was fitted well to the adsorption equilibrium data. The results indicated that the adsorption behavior of PGA-AP nanoparticles for Cu(II) was mainly a monolayer chemical adsorption process. The maximum adsorption capacity of PGA-AP nanoparticles was estimated to be 78.99 mg/g.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 749
Author(s):  
Celia Marcos ◽  
Valeria Medoro ◽  
Alaa Adawy

The aim of this study was to investigate the efficiency of removing Cr6+ from aqueous solutions using two exfoliated vermiculite: (1) heated abruptly at 1000 °C and (2) irradiated with microwave radiation. The effects investigated were contact time, adsorbate concentration and initial Cr6+ concentration. The adsorption with both exfoliated vermiculites was well described by the DKR isotherm, indicative of a cooperative process and with the pseudo second order kinetic model. The Kd value for the two exfoliated vermiculites was similar, 0.2 ·1010 μg/Kg. The maximum adsorption capacity of Cr6+ with thermo-exfoliated vermiculite, 2.81 mol/g, was much higher than with microwave irradiated vermiculite, 0.001 mol/g; both values were obtained with 0.5 g of vermiculite in contact with distilled water enriched with 1 ppm of Cr6+ for 24 h. Factors such as ion chemistry, the solution pH and ionic strength, influence the values of capacity, adsorption energy and initial adsorption rate values of the exfoliated vermiculite. In addition, these values depended on the exfoliation process, being the adsorption capacity highest with abrupt heating of vermiculite, while the adsorption energy and rate values showed just a slight increase with microwave irradiation. This aspect is important to select the most suitable vermiculite modification treatment to use it as an adsorbent.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Fuxiang Song ◽  
Na Wang ◽  
Zezhou Hu ◽  
Zhen Zhang ◽  
Xiaoxue Mai ◽  
...  

AbstractOral medical wastewater with heavy metal ions (such as plumbum, Pb2+) is regarded as the main pollutant produced in the oral cavity diagnosis, and the treatment process can pose a serious threat to human health. The removal of Pb2+ from oral medical wastewater facing major difficulties and challenges. Therefore, it is of great significance to take effective measures to remove Pb2+ by using effective methods. A new activated three-dimensional framework carbon (3D AFC), regarded as the main material to remove Pb2+ in the oral medical wastewater, has been fabricated successfully. In this experiment, the effects of 3D AFC absorbing Pb2+ under different conditions (including solid-to-liquid ratio, pH, ionic strength, contact time, and initial concentration, etc.) were discussed. And the result revealed that the adsorption kinetics process of Pb2+ on 3D AFC conformed to the pseudo-second-order model and the adsorption isotherm conformed to the Freundlich model. Under the condition that pH = 5.5 and T = 298 k, the calculated maximum adsorption capacity of 3D AFC for Pb2+ was 270.88 mg/g. In practical application, it has strong adsorption ability for Pb2+ in oral medical wastewater. Thus, 3D AFC shows promise for Pb2+ remove and recovery applications because of high adsorption capacity for Pb2+ in oral medical wastewater due to its high specific surface area, outstanding three-dimensional network structure.


2010 ◽  
Vol 8 (4) ◽  
pp. 906-912 ◽  
Author(s):  
Babak Samiey ◽  
Mohammad Dargahi

AbstractThermodynamics and kinetics of adsorption of congo red (CR) on cellulose are studied at 308–328 K. In the used concentration range of CR, interaction of CR with cellulose is exothermic and CR molecules adsorb chemically on cellulose surface. The effects of contact time, temperature and initial concentration of CR on kinetics of its adsorption on cellulose were investigated. The process proceeds according to the pseudo-second-order equation. Initial adsorption rate of adsorption is first-order in CR and the intraparticle diffusion of CR molecules within cellulose is identified as the main rate-limiting step.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Layth Imad Abd Ali ◽  
Wan Aini Wan Ibrahima ◽  
Azli Sulaiman ◽  
Mohd Marsin Sanagi

In the present study, Fe3O4 magnetic nanoparticles (MNPs) synthesized in-housed using co-precipitation method was applied for the treatment of aqueous solutions contaminated by Ni(II) ions. Experimental results indicated that at 25ºC, the optimum pH value for Ni(II) removal was pH 6.0 and an adsorbent dose of 60.0 mg.  The adsorption capacity of Fe3O4 nanoparticles for Ni(II) is 20.54 mg g−1. Adsorption kinetic rates were found to be fast; total equilibrium was achieved after 180 min. Kinetic experimental data fitted very well the pseudo-second order equation and the value of adsorption rate constants was calculated to be 0.004 and 0.0008 g mg−1 min at 5 and 40 mg L−1 initial Ni(II) concentrations, respectively. The equilibrium isotherms were evaluated in terms of maximum adsorption capacity and adsorption affinity by the application of Langmuir and Freundlich equations. The maximum monolayer capacity obtained from the Langmuir isotherm was 24.57 mg g−1 for Ni(II). Results indicate that the Langmuir model fits adsorption isotherm data better than the Freundlich model.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1454 ◽  
Author(s):  
Mohamed Abou Elfetouh Barakat ◽  
Rajeev Kumar ◽  
Moaaz Korany Seliem ◽  
Ali Qurany Selim ◽  
Mohamed Mobarak ◽  
...  

Surfactant–modified exfoliated Fayum clay (CTAB–EC) obtained after chemical treatment with a CTAB/H2O2 solution was further decorated with magnetic Fe3O4 nanoparticles (MNP). The final nanocomposite (MNP/CTAB–EC) was characterized by XRD, SEM, FTIR, TEM and its adsorptive capability against a model cationic dye, crystal violet (CV), was evaluated. A comparison of the adsorption performance of the raw clay and its modified counterparts using H2O2, CTAB, CTAB/H2O2 or MNP indicated that the adsorption capacity of MNP/CTAB–EC was the highest for CV removal at pH 8.0. The pseudo‒second order for the kinetics and Freundlich model for adsorption equilibrium fitted well the CV removal experimental data at all tested temperatures (25, 40 and 55 °C). The enhancement of the Langmuir adsorption capacity from 447.1 to 499.4 mg g−1 with increasing the temperature from 25 to 55 °C revealed an endothermic nature of the removal process. The interactions between CV and MNP/CTAB–EC were interpreted using advanced statistical physics models (ASPM) in order to elucidate the adsorption mechanism. Multilayer model fitted the adsorption process and therefore, the steric and energetic factors that impacted the CV adsorption were also interpreted using this model. The aggregated number of CV molecules per MNP/CTAB–EC active site ( n ) was more than unity at all temperatures, representing thus a vertical adsorption orientation and a multi‒interactions mechanism. It was determined that the increase of CV uptake with temperature was mainly controlled by the increase of the number of active sites (NM). Calculated adsorption energies (ΔE) revealed that CV removal was an endothermic and a physisorption process (ΔE < 40 kJ mol −1). MNP/CTAB–EC was magnetically separated, regenerated by NaOH, and reused without significant decrease in its adsorption efficiency, supporting a prosperity of its utilization as an effective adsorbent against hazardous dyes from wastewaters.


Sign in / Sign up

Export Citation Format

Share Document