scholarly journals Adsorption of Cu(II) by Poly-γ-glutamate/Apatite Nanoparticles

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 962
Author(s):  
Kuo-Yu Chen ◽  
Wei-Yu Zeng

Poly-γ-glutamate/apatite (PGA-AP) nanoparticles were prepared by chemical coprecipitation method in the presence of various concentrations of poly-γ-glutamate (γ-PGA). Powder X-ray diffraction pattern and energy-dispersive spectroscopy revealed that the main crystal phase of PGA-AP was hydroxyapatite. The immobilization of γ-PGA on PGA-AP was confirmed by Fourier transform infrared spectroscopy and the relative amount of γ-PGA incorporation into PGA-AP was determined by thermal gravimetric analysis. Dynamic light scattering measurements indicated that the particle size of PGA-AP nanoparticles increased remarkably with the decrease of γ-PGA content. The adsorption of aqueous Cu(II) onto the PGA-AP nanoparticles was investigated in batch experiments with varying contact time, solution pH and temperature. Results illustrated that the adsorption of Cu(II) was very rapid during the initial adsorption period. The adsorption capacity of PGA-AP nanoparticles for Cu(II) was increased with the increase in the γ-PGA content, solution pH and temperature. At a pH of 6 and 60 °C, a higher equilibrium adsorption capacity of about 74.80 mg/g was obtained. The kinetic studies indicated that Cu(II) adsorption onto PGA-AP nanoparticles obeyed well the pseudo-second order model. The Langmuir isotherm model was fitted well to the adsorption equilibrium data. The results indicated that the adsorption behavior of PGA-AP nanoparticles for Cu(II) was mainly a monolayer chemical adsorption process. The maximum adsorption capacity of PGA-AP nanoparticles was estimated to be 78.99 mg/g.

2015 ◽  
Vol 72 (7) ◽  
pp. 1217-1225 ◽  
Author(s):  
Fan Zhang ◽  
Shengfu He ◽  
Chen Zhang ◽  
Zhiyuan Peng

Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.


2020 ◽  
Vol 10 (7) ◽  
pp. 2251 ◽  
Author(s):  
Phyo Phyo Kyi ◽  
Jude Ofei Quansah ◽  
Chang-Gu Lee ◽  
Joon-Kwan Moon ◽  
Seong-Jik Park

In this study, we explored the adsorption potential of biochar derived from palm kernel shell (BC-PKS) as an affordable adsorbent for the removal of crystal violet from wastewater. Kinetics, equilibrium, and thermodynamics studies were carried out to evaluate the adsorption of crystal violet onto BC-PKS. The kinetics adsorption process followed the pseudo-second-order model, indicating that the rate of adsorption is principally controlled by chemisorption. The adsorption equilibrium data were better fitted by the Langmuir isotherm model with a determination coefficient of 0.954 and a maximum adsorption of 24.45 mg/g. Thermodynamics studies found the adsorption of crystal violet by BC-PKS to be endothermic with increasing randomness at the BC-PKS/crystal violet interface. The percentage removal and adsorption capacity increased with the pH of the solution, as the negative charges on the biochar surface at high pH enhance the electrostatic attraction between crystal violet molecules and BC-PKS. Increasing the BC-PKS dosage from 0.1 to 1.0 g increased percent removal and decreased the adsorption capacity of crystal violet onto BC-PKS. Therefore, biochar from agricultural by-products, i.e., palm kernel shell, can be cost-effective adsorbents for the removal of crystal violet from textile wastewater.


2021 ◽  
Vol 11 (19) ◽  
pp. 9257
Author(s):  
Seong-Jik Park ◽  
Yeon-Jin Lee ◽  
Jin-Kyu Kang ◽  
Je-Chan Lee ◽  
Chang-Gu Lee

This study assessed the applicability of Fe-impregnated biochar derived from cattle manure (Fe-CMB) as an adsorbent for removing Sb(V) from aqueous solutions and investigated the Sb(V) adsorption mechanism. Fe-CMB was mainly composed of C, O, Cl, Fe, Ca, and P, and the adsorption of Sb(V) onto Fe-CMB was identified using an energy dispersive spectrometer and Fourier transform infrared spectroscopy. Sb(V) adsorption reached equilibrium within 6 h, and the Sb(V) adsorption data as a function of time were well described by the pseudo-second-order model. The Langmuir isotherm model fit the equilibrium data better than the Freundlich model. The maximum adsorption capacity of Fe-CMB for Sb(V) obtained from the Langmuir model was 58.3 mg/g. Thermodynamic analysis of Sb(V) adsorption by Fe-CMB indicated that the adsorption process was exothermic and spontaneous. The Sb(V) removal percentage increased with the Fe-CMB dose, which achieved a removal of 98.5% at 10.0 g/L Fe-CMB. Increasing the solution pH from 3 to 11 slightly reduced Sb(V) adsorption by 6.5%. The inhibitory effect of anions on Sb(V) adsorption followed the order: Cl− ≈ NO3− < SO42− < HCO3− < PO43−.


2009 ◽  
Vol 27 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Laura Bulgariu ◽  
Dumitru Bulgariu ◽  
Theodor Malutan ◽  
Matei Macoveanu

The adsorption of lead(II) ions from aqueous solution onto lignin was investigated in this study. Thus, the influence of the initial solution pH, the lignin dosage, the initial Pb(II) ion concentration and the contact time were investigated at room temperature (19 ± 0.5 °C) in a batch system. Adsorption equilibrium was approached within 30 min. The adsorption kinetic data could be well described by the pseudo-second-order kinetic model, while the equilibrium data were well fitted using the Langmuir isotherm model. A maximum adsorption capacity of 32.36 mg/g was observed. The results of this study indicate that lignin has the potential to become an effective and economical adsorbent for the removal of Pb(II) ions from industrial wastewaters.


2018 ◽  
Vol 77 (5) ◽  
pp. 1303-1312 ◽  
Author(s):  
Jiangang Yu ◽  
Xingwen Zhang ◽  
Dong Wang ◽  
Ping Li

Abstract In this work, the biochar adsorbent carboxymethyl cellulose (CMC), was prepared from the pyrolysis (600 °C, 120 min) of chicken manure for the removal of methyl orange (MO) from aqueous solution, and its physicochemical properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The experimental parameters including agitation speed, initial solution pH, biochar dosage and contact time on the adsorption properties of MO from aqueous solution onto CMC were investigated in batch experiments. The kinetic adsorption of different initial concentration could be accurately described by the pseudo-second-order model and the overall rate process was apparently influenced by external mass transfer and intra-particle diffusion. Furthermore, the Langmuir isotherm model showed a better fit with equilibrium data (R2 &gt; 0.99), with the maximum adsorption capacity of 39.47 mg·g−1 at 25 °C. Moreover, the thermodynamic parameters indicated that the adsorption of MO onto CMC was a spontaneous and endothermic process. The results of this study indicated that CMC could be used as a promising biomass adsorbent material for aqueous solutions containing MO.


2013 ◽  
Vol 69 (6) ◽  
pp. 1234-1240 ◽  
Author(s):  
O. Paşka ◽  
R. Ianoş ◽  
C. Păcurariu ◽  
A. Brădeanu

A magnetic iron oxide nanopowder (MnP), prepared by a simple and efficient combustion synthesis technique, was tested for the removal of the anionic dye Congo Red (CR) from aqueous solution. The influence of solution pH, adsorbent dose, temperature, contact time and initial dye concentration on the adsorption of CR onto MnP were investigated. It was shown that the CR adsorption was pH dependent and the adsorption mechanism was governed by electrostatic forces. The adsorption kinetic was best described by the pseudo-second-order model and the equilibrium data were well fitted to the Langmuir isotherm, yielding maximum adsorption capacity of 54.46 mg g−1. The undeniable advantages of the MnP adsorbent such as inexpensive preparation method, good adsorption capacity and easy separation using an external magnetic field, recommend it as a promising candidate for the removal of anionic dyes from polluted water.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1540
Author(s):  
Muhammad Ahmad ◽  
Tehseen Nawaz ◽  
Mohammad Mujahid Alam ◽  
Yasir Abbas ◽  
Shafqat Ali ◽  
...  

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1449 ◽  
Author(s):  
Xianchun Hu ◽  
Xianfeng Du

Microporous starch (MPS) granules were formed by the partial hydrolysis of starch using α–amylase and glucoamylase. Due to its biodegradability and safety, MPS was employed to adsorb tea polyphenols (TPS) based on their microporous characteristics. The influences of solution pH, time, initial concentration and temperature on the adsorptive capacity were investigated. The adsorption kinetics data conformed to the pseudo second–order kinetics model, and the equilibrium adsorption data were well described by the Langmuir isotherm model. According to the fitting of the adsorption isotherm formula, the maximum adsorption capacity of TPS onto MPS at pH 6.7 and T = 293 K was approximately 63.1 mg/g. The thermodynamic parameters suggested that the adsorption of TPS onto MPS was spontaneous and exothermic. Fourier transform infrared (FT–IR) analysis and the thermodynamics data were consistent with a physical adsorption mechanism. In addition, MPS-loaded TPS had better stability during long-term storage at ambient temperature.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1372 ◽  
Author(s):  
Lorena Alcaraz ◽  
María Esther Escudero ◽  
Francisco José Alguacil ◽  
Irene Llorente ◽  
Ana Urbieta ◽  
...  

This paper describes the physicochemical study of the adsorption of dysprosium (Dy3+) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. Potassium hydroxide (KOH)-activated carbon is a microporous material with a specific Brunauer–Emmett–Teller (BET) surface area of 2330 m2·g−1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m2·g−1. A significant dependence of the adsorption capacity on the solution pH was found, but it does not significantly depend on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg·g−1 and 33.52 mg·g−1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better a fit to the Langmuir model and pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous, and favorable process.


2017 ◽  
Vol 77 (3) ◽  
pp. 628-637 ◽  
Author(s):  
Shuangzhen Guo ◽  
Jian Zhang ◽  
Xianlong Li ◽  
Fan Zhang ◽  
Xixi Zhu

Abstract A novel core-shell bio-adsorbent was fabricated by using biological materials for removing methyl orange (MO) from aqueous solution. The structure characteristics results of scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), thermo-gravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Brunauer–Emmett–Teller (BET) shows that Fe3O4-CS-L has been successfully prepared. The effects of contact time, pH, temperature and initial concentration were explored. The results suggested pH was a negligible factor in adsorption progress. Kinetic studies showed that the experiment data followed pseudo-second-order model. Boyd mode suggested that external mass transfer showed a rather weak rate control for MO adsorption onto Fe3O4-CS-L. Equilibrium studies showed that isotherm data were the best described by Langmuir model. The maximum adsorption capacity of MO estimated to be 338.98 mg/g at 298 K. Moreover, the adsorption capacity of Fe3O4-CS-L can keep about 74% in the fifth adsorption–regeneration cycle. Thus, the Fe3O4-CS-L could be a kind of promising material for removing MO from wastewater.


Sign in / Sign up

Export Citation Format

Share Document