AutoCell Systematic Evolution of Ligands by Exponential Enrichment: The Software Designed and Developed for the Automated Screening System of Nucleic Acid Aptamers

2021 ◽  
Vol 21 (10) ◽  
pp. 5363-5369
Author(s):  
Yuhong Pei ◽  
Chao Wang ◽  
Zhu Chen ◽  
Song Li ◽  
Hui Chen ◽  
...  

Aptamers are a new kind of nano-probes for bioassays and drug delivery, etc. In this paper, software has been developed as an automatic control center for the automated aptamer selecting system which realized the high integration of aptamer selection, data acquisition and processing. This software, applied in windows system, is developed by C# with the Microsoft Visual Studio 2015 integrated developing environment and the database used in this software is implemented using open source relational database MYSQL. According to the requirement analysis, this software realized various important necessary functions including feasible experiment design, auto-control of the hardware, real time process monitoring and efficient data management which perfectly satisfies the users’ demands. During the actual experiment operation, this software worked smoothly and assumed stable serial port communication between it and the hardware, meanwhile, the interaction between the software and MYSQL remained good stability. As a consequence, it is practical and reasonable to apply this software to the automated aptamer selecting system for research.

Author(s):  
D. A. Belinskaya ◽  
Yu. V. Chelusnova ◽  
V. V. Abzianidze ◽  
N. V. Goncharov

Poisoning with organophosphorus compounds occupy one of the leading places in exotoxicosis. At the first stage, the detoxification of organophosphates can be provided with the help of DNA or RNA aptamers that bind the poison in the bloodstream. Currently, the main method of searching for aptamers is the experimental method of systematic evolution of ligands by exponential enrichment (SELEX). In the process of aptamer selection, the target molecule must be immobilized via the streptavidin-biotin complex. Since the poison molecule is small in size, to increase its availability for binding to aptamer, it is necessary to use a spacer between organophosphorus compounds and biotin. The aim of this work was to optimize the selection of aptamers for organophosphorus compounds by increasing the availability of a poison molecule immobilized via the streptavidin-biotin complex on the example of paraoxon. For this purpose, three spacers between organophosphorus compounds and biotin were tested using molecular modeling methods: three links of polyethylene glycol (3-PEG), four links of polyethylene glycol (4-PEG) and aminohexyl. The conformation of the biotinylated paraoxon complex with streptavidin and the interaction of paraoxon with the binding fragment of the aptamer were modeled using molecular docking and molecular dynamics methods. The ability of biotinylated paraoxon to bind to the aptamer has been evaluated by analyzing the surface area of the paraoxon available to the solvent, as well as by calculating the free binding energies. It has been shown that only in the case of aminohexyl immobilized paraoxon can contact the aptamer. At the final stage, the synthesis of paraoxon bound to biotin via aminohexyl was carried out.


2017 ◽  
Author(s):  
Fangjie Zhu ◽  
Lucas Farnung ◽  
Eevi Kaasinen ◽  
Biswajyoti Sahu ◽  
Yimeng Yin ◽  
...  

Nucleosomes cover most of the genome and are thought to be displaced by transcription factors (TFs) in regions that direct gene expression. However, the modes of interaction between TFs and nucleosomal DNA remain largely unknown. Here, we use nucleosome consecutive affinity-purification systematic evolution of ligands by exponential enrichment (NCAP-SELEX) to systematically explore interactions between the nucleosome and 220 TFs representing diverse structural families. Consistently with earlier observations, we find that the vast majority of TFs have less access to nucleosomal DNA than to free DNA. The motifs recovered from TFs bound to nucleosomal and free DNA are generally similar; however, steric hindrance and scaffolding by the nucleosome result in specific positioning and orientation of the motifs. Many TFs preferentially bind close to the end of nucleosomal DNA, or to periodic positions at its solvent-exposed side. TFs often also bind nucleosomal DNA in a particular orientation, because the nucleosome breaks the local rotational symmetry of DNA. Some TFs also specifically interact with DNA located at the dyad position where only one DNA gyre is wound, whereas other TFs prefer sites spanning two DNA gyres and bind specifically to each of them. Our work reveals striking differences in TF binding to free and nucleosomal DNA, and uncovers a rich interaction landscape between the TFs and the nucleosome.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Xinliang Yu ◽  
Ruqin Yu ◽  
Xiaohai Yang

AbstractSelecting aptamers for human C-reactive protein (CRP) would be of critical importance in predicting the risk for cardiovascular disease. The enrichment level of DNA aptamers is an important parameter for selecting candidate aptamers for further affinity and specificity determination. This paper is the first report on pattern recognition used for CRP aptamer enrichment levels in the systematic evolution of ligands by exponential enrichment (SELEX) process, by applying structure-activity relationship models. After generating 10 rounds of graphene oxide (GO)-SELEX and 1670 molecular descriptors, eight molecular descriptors were selected and five latent variables were then obtained with principal component analysis (PCA), to develop a support vector classification (SVC) model. The SVC model (C=8.1728 and


2018 ◽  
Vol 6 (12) ◽  
pp. 3152-3159 ◽  
Author(s):  
Mei Liu ◽  
Tong Yang ◽  
Zhongsi Chen ◽  
Zhifei Wang ◽  
Nongyue He

Aptamers are single-stranded DNA or RNA oligonucleotides selected by systematic evolution of ligands by exponential enrichment (SELEX), which show great potential in the diagnosis and personalized therapy of cancers, due to their specific advantages over antibodies.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3781 ◽  
Author(s):  
Carolina Roxo ◽  
Weronika Kotkowiak ◽  
Anna Pasternak

G-quadruplexes constitute a unique class of nucleic acid structures formed by G-rich oligonucleotides of DNA- or RNA-type. Depending on their chemical nature, loops length, and localization in the sequence or structure molecularity, G-quadruplexes are highly polymorphic structures showing various folding topologies. They may be formed in the human genome where they are believed to play a pivotal role in the regulation of multiple biological processes such as replication, transcription, and translation. Thus, natural G-quadruplex structures became prospective targets for disease treatment. The fast development of systematic evolution of ligands by exponential enrichment (SELEX) technologies provided a number of G-rich aptamers revealing the potential of G-quadruplex structures as a promising molecular tool targeted toward various biologically important ligands. Because of their high stability, increased cellular uptake, ease of chemical modification, minor production costs, and convenient storage, G-rich aptamers became interesting therapeutic and diagnostic alternatives to antibodies. In this review, we describe the recent advances in the development of G-quadruplex based aptamers by focusing on the therapeutic and diagnostic potential of this exceptional class of nucleic acid structures.


2020 ◽  
Vol 21 (8) ◽  
pp. 2793 ◽  
Author(s):  
Zhaoying Fu ◽  
Jim Xiang

The arrival of the monoclonal antibody (mAb) technology in the 1970s brought with it the hope of conquering cancers to the medical community. However, mAbs, on the whole, did not achieve the expected wonder in cancer therapy although they do have demonstrated successfulness in the treatment of a few types of cancers. In 1990, another technology of making biomolecules capable of specific binding appeared. This technique, systematic evolution of ligands by exponential enrichment (SELEX), can make aptamers, single-stranded DNAs or RNAs that bind targets with high specificity and affinity. Aptamers have some advantages over mAbs in therapeutic uses particularly because they have little or no immunogenicity, which means the feasibility of repeated use and fewer side effects. In this review, the general properties of the aptamer, the advantages and limitations of aptamers, the principle and procedure of aptamer production with SELEX, particularly the undergoing studies in aptamers for cancer therapy, and selected anticancer aptamers that have entered clinical trials or are under active investigations are summarized.


2011 ◽  
Vol 71-78 ◽  
pp. 3110-3113
Author(s):  
Shi Sheng Jia ◽  
Mao Ying Zhou

The sound gathering and broadcasting system in which the TMS320VC5416 is as the control center, the TLV320AIC23 as the codec and G.711 as coding standard is presented in this paper. The composition of the system, the design of the hardware circuit and the programming method of the software are proposed. The configuration mode of the Multichannel Buffered Serial Port (McBSP0 and McBSP1) of TMS320VC5416 and that of the control interface and the digital audio interface of the codec chip TLV320AIC23 are determined. The system realizes the storage and transmission of the digit audio signals well and obtains a high grade effect in time, with DSP chip processing the digit audio signals by means of the G.711 code standard.


Sign in / Sign up

Export Citation Format

Share Document