Study on the anti-inflammatory and lipid-lowering activities of novel chimeric peptide

2020 ◽  
Vol 10 (3) ◽  
pp. 389-395
Author(s):  
Cong Liu ◽  
Meijun Tan ◽  
Kaixiang Cao ◽  
Jingwei Yan ◽  
Kuikui Hu ◽  
...  

Acne was treated by combining the N-terminal of HPA3NT3 (where Lys in position 13 was replaced by Asn) and the C-terminal antibacterial peptide HAG of GLP-1 (32–36) amide pentapeptide after amino replacement. The minimal inhibitory concentration (MIC) was measured using the broth dilution method to evaluate HAG’s antibacterial activity. HAG’s cytotoxicity was determined using water-soluble tetrazolium salt (WST-1). Interleukin-8 (IL-8) expression in human immortalized keratinocytes (HaCaT) cells stimulated by Propionibacterium acnes and treated with HAG was measured by Enzyme-linked immunosorbent assay (ELISA). IL-8 and toll-like receptor 2 (TLR2) expression was detected using real-time reverse transcriptase polymerase chain reaction (qRTPCR) to analyze HAG’s anti-inflammatory effect in vitro. The total RNA was extracted using SiO2 nanoparticles. Oil red O staining was used to detect the intracellular lipid drop of Sebaceous Gland Cell Line (SZ95), and ELISA was used to detect triglyceride levels. Hematoxylin-eosin (HE) staining was used to evaluate ear edema induced by Propionibacterium acne in mice. The MIC of HAG in Propionibacterium acnes was 6.3 μg/mL, and 50 μg/mL of HAG showed cytotoxicity. HAG significantly reduced TLR2 and IL-8 expression in HaCaT cells. Oil red O staining showed that the lipid distribution of HAG-treated SZ95 and triglyceride secretion decreased. HAG reduced ear swelling induced by Propionibacterium acnes. HAG has anti-bacterial and anti-inflammatory effects, excellent hypolipidemic function, and low cytotoxicity. Further development of HAG could be a promising and effective reagent for acne therapy.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 500 ◽  
Author(s):  
Denise Beconcini ◽  
Francesca Felice ◽  
Ylenia Zambito ◽  
Angela Fabiano ◽  
Anna Maria Piras ◽  
...  

This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10, and PGE2) released by HUVEC were quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-α, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2620
Author(s):  
Mi-Jin Yim ◽  
Jeong Min Lee ◽  
Hyun-Soo Kim ◽  
Grace Choi ◽  
Young-Mog Kim ◽  
...  

Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Peng Wang ◽  
Xiao-Tao Li ◽  
Lei Sun ◽  
Lei Shen

In the present study, we investigated the anti-inflammatory activity of water-soluble polysaccharide ofAgaricus blazeiMurill (WSP-AbM) on ovariectomized osteopenic rats. The rats were administered orally WSP-AbM (200 mg/kg BW) for 8 weeks. Subsequent serum maleic dialdehyde (MDA) level, total antioxidant status (TAOS), nuclear factor kappa B (NF-κB) level, polymorphonuclear (PMN) cells level, interleukin-1β(IL-1β) level, inducible nitric oxide synthase (iNOS) level, tumor necrosis factor-α(TNF-α) level, adhesion molecule (ICAM-1), and cyclooxygenase-2 (COX-2) were determined by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. WSP-AbM administration markedly (P<0.05) decreased serum IL-1βand TNF-αlevels and the expressions of ICAM-1, COX-2, and iNOS NF-κB compared with OVX rats. WSP-AbM administration alsomarkedly (P<0.05) decreased PMN infiltration. In conclusion, we observed that WSP-AbM supplementation had anti-inflammatory effects in a model of osteoporosis disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xue Du ◽  
Qing Yuan ◽  
Ye Qu ◽  
Yuan Zhou ◽  
Jia Bei

Objective. To find a convenient and efficient way to isolate MSCs from human menstrual blood and to investigate their biological characteristics, proliferative capacity, and secretion levels.Methods. MSCs were isolated from menstrual blood of 3 healthy women using adherence. Cell immunological phenotype was examined by flow cytometry; the adipogenic, osteogenic, and chondrogenic differentiation of MSCs was examined by Oil-Red-O staining, ALP staining, and Alcian Blue staining, respectively; and the secretion of cytokines, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1), was detected using enzyme-linked immunosorbent assay.Results. MB-MSCs were successfully isolated from human menstrual blood using adherence. They were positive for CD73, CD105, CD29, and CD44, but negative for CD31 and CD45. The differentiated MB-MSCs were positive for ALP staining, Oil-Red-O staining, and Alcian Blue staining. In addition, they could secrete antiapoptotic cytokines, such as VEGF, IGF-1, and HGF.Conclusion. It is feasible to isolate MSCs from human menstrual blood, thus avoiding invasive procedures and ethical controversies. Adherence could be a promising alternative to the density gradient centrifugation for the isolation of MSCs from menstrual blood.


2019 ◽  
Vol 28 (1) ◽  
pp. 14-20
Author(s):  
Pungguri Ayu Nega Sarsanti ◽  
Mohamad Sadikin ◽  
Sri Widia Azraki Jusman

BACKGROUND Activated macrophages require increased oxygen to destroy foreign bodies, leading to an increase in the levels of reactive oxygen species (ROS). Therefore, macrophages would experience hypoxic and oxidative stress conditions at the same time. Thus, this study was aimed to evaluate the mechanism of the activated macrophages to overcoming this dual condition.METHODS The activated macrophages were harvested from the intraperitoneal cavities of 18 BALB/c mice immunized with 2% sheep red blood cells (SRBCs). The macrophage suspension was divided into four groups: control, 24, 48, and 72 hours after-immunization groups. The expressions of hypoxia-inducible factor (HIF)-1α, HIF-2α, and cytoglobin (Cygb), as markers for hypoxic condition, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), whereas peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) protein as a marker for mitochondrial biogenesis and aerobic metabolism was measured with ELISA. The analysis of oxidative stress was conducted with the water-soluble tetrazolium salt test.RESULTS The HIF-1α mRNA expression was the highest at 24 hours, whereas the HIF-2α mRNA showed no increased expression during the observation. The Cygb mRNA decreased after 24 hours. The highest expressions of HIF-1α and HIF-2α proteins were detected at 72 hours, whereas the Cygb protein expression increased since 24 hours. The PGC-1α protein expression increased at 72 hours. The WST test showed the highest ROS level at 24 hours.CONCLUSIONS The macrophages were activated by SRBCs underwent dual hypoxia and oxidative stress condition simultaneously to overcome the foreign bodies. The macrophages overcame these stress conditions by increasing their aerobic metabolism.


2012 ◽  
Vol 7 (11) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Kuo-Feng Hua ◽  
Guan-Ming Chen ◽  
Chen-Lung Ho ◽  
Ming-Chung Chen ◽  
Yi-Lin Sophia Chen ◽  
...  

Recent studies demonstrated that freshwater clam (Corbicula fluminea) has lipid-lowering and hepatoprotective activities, but its effect on immune responses has not yet been addressed. Here we showed that ethanol extracts of C. fluminea (ECF) reduced nitrite oxide, interleukin-1β, interleukin-6, and tumor necrosis factor-α in lipopolysaccharide-activated macrophages. Further, ECF was fractionated into n-hexane, ethyl acetate, ethanol, and water soluble fractions. Of these, the ethyl acetate soluble fraction (EACF) had the highest capacity to inhibit pro-inflammatory mediators expression. The underlying mechanisms for the anti-inflammatory activity of EACF were demonstrated as down-regulation of ERK1/2, JNK1/2, and p38 phosphorylation and NF-κB activity. Using gas chromatography-mass spectrometric analysis EACF was found to be composed mainly of fatty acids and steroids. Our results provide evidence that freshwater clam has anti-inflammatory activity, and support the possibility for the development of freshwater clam as a health supplement or adjuvant therapeutic agent for either preventing or treating inflammation related diseases.


2020 ◽  
Vol 21 (5) ◽  
pp. 1717 ◽  
Author(s):  
Du Hyeon Hwang ◽  
Dong Yeol Lee ◽  
Phil-Ok Koh ◽  
Hye Ryeon Yang ◽  
Changkeun Kang ◽  
...  

Acne, also known as acne vulgaris, is a common disorder of human skin involving the sebaceous gland and Propionibacterium acnes (P. acnes). Although there are a number of treatments suggested for acne, many of them have limitations in their safety and have efficacy issues. Therefore, there is a high demand to develop safe and effective novel acne treatments. In the present study, we demonstrate the protective effects of Rosa davurica Pall. leaves (RDL) extract against P. acnes-induced inflammatory responses in vitro and in vivo. The results showed that RDL dose-dependently inhibited the growth of skin bacteria, including P. acnes (KCTC3314) and aerobic Staphylococcus aureus (KCTC1621) or Staphylococcus epidermidis (KCTC1917). The downregulation of proinflammatory cytokines by RDL appears to be mediated by blocking the phosphorylations of mitogen-activated protein kinase (MAPK) and subsequent nuclear factor-kappa B (NF-κB) pathways in P. acnes-stimulated HaCaT cells. In a mouse model of acne vulgaris, histopathological changes were examined in the P. acnes-induced mouse ear edema. The concomitant intradermal injection of RDL resulted in the reduction of ear swelling in mice along with microabscess but exerted no cytotoxic effects for skin cells. Instrumental analysis demonstrated there were seven major components in the RDL extract, and they seemed to have important roles in the anti-inflammatory and antimicrobial effects of RDL. Conclusively, our present work showed for the first time that RDL has anti-inflammatory and antimicrobial effects against P. acnes, suggesting RDL as a promising novel strategy for the treatment of acne, including natural additives in anti-acne cosmetics or pharmaceutical products.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1701
Author(s):  
Hyeon-Ji Lim ◽  
In-Sun Park ◽  
Eun Yee Jie ◽  
Woo Seok Ahn ◽  
Sang-Jun Kim ◽  
...  

Toona sinensis has been traditionally used to treat dysentery, enteritis, flatulence, and itchiness. However, the existence of anti-inflammatory effects of T. sinensis on Propionibacterium acnes-induced skin disease is unknown. In vitro cultures of plant cells and tissues produced under controlled conditions offer a continuous production platform for plant natural products including pigments and anti-inflammatory agents. In this study, we determine the anti-inflammatory activities of an extract of in vitro grown adventitious shoots of T. sinensis on P. acnes, the etiologic agent of skin inflammation. The extract of T. sinensis showed antioxidant and anti-inflammatory activity in LPS-treated RAW264.7 cells. It also had antibacterial activity and anti-inflammatory effects on P. acnes-treated HaCaT cells. In addition, these effects were regulated by suppression of the mitogen-activated protein kinase (MAPK) pathways. These results suggesting the potential application of adventitious shoots of T. sinensis grown with an in vitro proliferation system as a medicine for treating P. acnes-induced inflammatory skin disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yurong Zhang ◽  
Xiaoning Zhu ◽  
Ding Zheng ◽  
Yue Yin ◽  
Mengyun Peng ◽  
...  

The purpose of this study was to investigate the effects of Qutan Huoxue Formula (QHF) on liver injury in mice with nonalcoholic steatohepatitis (NASH) by upregulating SOCS1 to inhibit the TLR4/NF-κB signaling pathway. Thirty male C57BL/6J mice (20–22 g) were randomly divided into the normal diet group (ND group), methionine- and choline-deficient diet group (MCD group), and Qutan Huoxue Formula group (QHF group). Mice in the ND group were fed a regular diet, while mice in other two groups were fed MCD diet. After successful molding, the QHF group was gavaged by QHF. The ND group and MCD group were gavaged by the same volume of normal saline, once a day. During the period of gavaging, all mice continue to be fed MCD fodder except for the ND group. All mice were killed at 8 w. H&E staining and Oil Red O staining were used to observe the pathological changes of liver tissues. Serum level of ALT, AST, TC, and TG was detected by enzyme-linked immunosorbent assay. The expression of liver SOCS1, TLR4, Myd88, and NF-κB was detected by real-time PCR, immunohistochemistry, and Western blot. QHF can significantly reduce the serum levels of ALT, AST, TC, and TG of NASH mice and reduce the degree of liver fat degeneration and inflammation. It also can decrease both mRNA and protein expressions of liver TLR4, Myd88, and NF-κB. The mRNA expression of SOCS1 increased, while the SOCS1 protein expression decreased. In conclusion, QHF can significantly alleviate hepatic steatosis and inflammation in NASH mice by upregulating SOCS1 to inhibit the TLR4/NF-κB signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiena Wu ◽  
Ruiyin Guo ◽  
Jinwei Chai ◽  
Weichen Xiong ◽  
Maolin Tian ◽  
...  

Acne vulgaris is a common adolescent skin condition which is mainly caused by Propionibacterium acnes overcolonization and subsequent inflammation. Our previous studies have demonstrated that Cath-MH, an antimicrobial peptide from the skin of the frog Microhyla heymonsivogt, possesses potential antimicrobial, LPS-binding, and anti-septicemic properties. However, its protective effects and potential mechanisms against acne vulgaris are still unclear. In the present study, its anti-P. acnes effects were measured by two-fold broth dilution method, agglutination assay, scanning electron microscopy and confocal laser scanning microscopy experiments. Its treatment potential for acne vulgaris was further evaluated in mice ear inoculated by P. acnes. In addition, the binding ability between Cath-MH and LTA was measured by the Circular Dichroism and antibacterial assay. Moreover, the anti-inflammatory efficiency of Cath-MH was evaluated in LTA- and LPS-induced RAW 264.7 macrophage cells. Cath-MH was found to kill P. acnes with a MIC value of about 1.56 μM by membrane disruption mechanism. It also exhibited agglutination activity against P. acnes. Cath-MH was able to bind LTA as well as LPS, inhibit LTA/LPS-stimulated TLR2/4 expression, and subsequently decreased the inflammatory response in RAW 264.7 cells. As expected, Cath-MH alleviated the formation of edema and the infiltration of inflammatory cells in acne mouse model with concurrent suppression of P. acnes growth and inflammatory cytokines expression in vivo. The potent P. acnes inhibition activity combined with powerful anti-inflammatory effect of Cath-MH indicates its potential as a novel therapeutic option for acne vulgaris.


Sign in / Sign up

Export Citation Format

Share Document