scholarly journals A Statistical Comparison of the Properties of Flash Flooding and Nonflooding Precipitation Events in Portions of New York and Pennsylvania

2008 ◽  
Vol 23 (1) ◽  
pp. 114-130 ◽  
Author(s):  
Stephen M. Jessup ◽  
Arthur T. DeGaetano

Abstract Flash floods reported for the forecast area of the National Weather Service Forecast Office at Binghamton, New York (BGM), are compared with similar significant precipitation and flash flood watch events not corresponding to flash flood reports. These event types are characterized by measures of surface hydrological conditions, surface and upper-air variables, thermodynamic properties, and proxies for synoptic-scale features. Flash flood and nonflood events are compared quantitatively via discriminant analysis and cross validation, and qualitatively via scatterplots and composite soundings. Results are presented in the context of a flash flood checklist used at BGM prior to this study. Flash floods and nonfloods are found to differ most significantly in antecedent soil moisture. The wind direction at 850 hPa shows differences between flood and nonflood events, with flooding more common for an easterly to southeasterly direction and nonflooding more common for a northwesterly direction. Southwesterly wind direction is characteristic of both types. In general, nonflooding significant precipitation events are more commonly associated with a better-defined ridge axis of relatively high 850-hPa equivalent potential temperature and larger convective available potential energy as compared to the flash flood events. Several parameters included on the BGM flash flood checklist, though effective at distinguishing significant precipitation events and flash floods from random events, were found to be unable to separate flash floods from nonflooding significant rain events.

2018 ◽  
Vol 229 ◽  
pp. 03002 ◽  
Author(s):  
Irfan Pramono ◽  
Endang Savitri

Flash flood often occurs in West Sumatera. In spite of heavy rain, flash floods are also caused by the landslide in the riverside that blocks the river as a natural dam. The natural dam can be broken at any time, depending on storage capacity. Flash flood occurs when the dam is broken. The aim of the research is to mitigate flash floods based on parameters influencing flood and landslide. The research was conducted in Arau watershed, West Sumatera. Parameters that have a direct proportion of floods are maximum daily rainfall, watershed shape, river gradient, drainage density, slope, and land cover. Parameters influencing landslides are antecedent soil moisture, slope, geologic type especially fault line, soil depth, and land cover. GIS is used to analyze the factors influencing flood and landslide spatially. The results show that more than 50% of the Arau watershed are slightly high and high vulnerability due to its natural condition. Furthermore, the locations of fault, especially in the riverside, should be noticed because this location could become a natural dam causing flash flood. In order to reduce flash flood impact, the natural dam should be opened as soon as possible.


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Péter Hegedüs ◽  
Szabolcs Czigány ◽  
László Balatonyi ◽  
Ervin Pirkhoffer

AbstractFlash floods are one of the most significant natural hazards of today. Due to the complexity of flash flood triggering factors, to prevent or mitigate flood triggered losses, numeric model based flood forecasting models are capable tools to predict stream water levels. The main goal of the current research was to reproduce two flow peaks with the HEC-HMS rainfall-runoff model and test the model sensitivity for various input parameters. To obtain sufficient input data, we monitored soil depth, maximum infiltration rate, soil moisture content, rainfall, time of concentration and flow. To obtain input data, parameters were calculated, measured in the Sás Valley experimental watershed (SW Hungary) or optimized with the built in function of the HEC-HMS. Soil moisture was monitored in the 1.7 km2 pilot catchment over the period between September 2008 and September 2009. HEC-HMS had a good performance reproducing the two events, however simulated flow time series are highly influenced by the antecedent soil moisture, infiltration rate and canopy storage. Outflow modeled data were verified for two flood events (June 4, 2008 and July 9, 2009). The HEC-HMS was over-sensitive for input soil moisture and with increasing input rainfall and increasing outflow, larger simulation errors were observed.


2021 ◽  
pp. 267-279
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Bahman Vaziri

AbstractExperimental studies of flash floods require rainfall simulations. For this reason, various rainfall simulators have been designed, built, and employed in previous studies. These previous rainfall simulators have provided good simulations of constant rainfall intensities; however, these simulators cannot generate temporally varied rainstorms. Thus, the effect of the temporal distribution of a rainstorm on flash flooding cannot be studied using current rainfall simulators. To achieve accurate and reliable results in flash flood studies, simulating rainstorms that are similar to natural precipitation events is essential, and natural rainfall varies temporally. Thus, a rainstorm simulator was designed and built using cascading tanks to generate rainstorm hyetographs that cannot be obtained using traditional rainfall simulators. The result of the rainstorm generated by the proposed instrument and its numerical model showed that the instrument can simulate the temporal distributions of rainstorms with an accuracy of 95 percent. Consequently, the proposed instrument and its numerical model can be applied for generating artificial rainstorm hyetographs in experimental and field studies of flash floods.


2021 ◽  
Author(s):  
Judith Meyer ◽  
Malte Neuper ◽  
Luca Mathias ◽  
Erwin Zehe ◽  
Laurent Pfister

Abstract. In recent years, flash floods repeatedly occurred in temperate regions of central western Europe. Unlike in Mediterranean catchments, this flooding behaviour is unusual. In the past, and especially in the 1990s, floods were characterized by predictable, slowly rising water levels during winter and driven by westerly atmospheric fluxes (Pfister et al., 2004). The intention of this study is to link the recent occurrence of flash floods in central western Europe to extreme precipitation and specific atmospheric conditions to identify the cause for this apparent shift. Therefore, we hypothesise that an increase in extreme precipitation events has subsequently led to an increase in the occurrence of flash flood events in central western Europe and all that being caused by a change in the occurrence of flash flood favouring atmospheric conditions. To test this hypothesis, we compiled data on flash floods in central western Europe and selected precipitation events above 40 mm h−1 from radar data (RADOLAN, DWD). Moreover, we identified proxy parameters representative for flash flood favouring atmospheric conditions from the ERA5 reanalysis dataset. High specific humidity in the lower troposphere (q ≥ 0.004 kg kg−1), sufficient latent instability (CAPE ≥ 100 J kg−1) and weak deep-layer wind shear (DLS ≤ 10 m s−1) proved to be characteristic for long-lasting intense rainfall that can potentially trigger flash floods. These atmospheric parameters, as well as the flash flood and precipitation events were then analysed using linear models. Thereby we found significant increases in atmospheric moisture contents and increases in atmospheric instability. Parameters representing the motion and organisation of convective systems occurred slightly more often or remained unchanged in the time period from 1981–2020. Moreover, a trend in the occurrence of flash floods was confirmed. The number of precipitation events, their maximum 5-minute intensities as well as their hourly sums were however characterized by large inter-annual variations and no trends could be identified between 2002–2020. This study therefore shows that the link from atmospheric conditions via precipitation to flash floods cannot be traced down in an isolated way. The complexity of interactions is likely higher and future analyses should include other potentially relevant factors such as intra-annual precipitation patterns or catchment specific parameters.


2016 ◽  
Vol 55 (9) ◽  
pp. 1953-1963 ◽  
Author(s):  
Rebecca D. Marjerison ◽  
M. Todd Walter ◽  
Patrick J. Sullivan ◽  
Stephen J. Colucci

AbstractFlash floods cause more fatalities than any other weather-related natural hazard and cause significant damage to property and infrastructure. It is important to understand the underlying processes that lead to these infrequent but high-consequence events. Accurately determining the locations of flash flood events can be difficult, which impedes comprehensive research of the phenomena. While some flash floods can be detected by automated means (e.g., streamflow gauges), flash floods (and other severe weather events) are generally based on human observations and may not reflect the actual distribution of event locations. The Storm Data–Storm Events Database, which is produced from National Weather Service reports, was used to locate reported flash floods within the forecast area of the Binghamton, New York, Weather Forecast Office between 2007 and 2013. The distribution of those reports was analyzed as a function of environmental variables associated with flood generation including slope, impervious area, soil saturated hydraulic conductivity ksat, representative rainfall intensity, and representative rainfall depth, as well as human population. A spatial conditional autoregressive model was used to test the hypothesis that flash flood reports are made more frequently in areas with higher populations, even when other flood-generating processes are considered. Slope, soil saturated hydraulic conductivity, and impervious area are significant predictors of flash flood reports. When population is added as a predictor, the model is similarly robust, but impervious area and ksat are no longer significant predictors. These results may challenge the assumption that flash flood reports are strongly biased by population.


2020 ◽  
Vol 163 ◽  
pp. 02005
Author(s):  
Liudmila Kuksina ◽  
Valentin Golosov

Flash floods are one of the most widespread and dangerous phenomenon on our planet. They are characterized by fast speed of development and short duration. However their study just begins because there is no one opinion what flash flood is, and there is no special term in many countries. The key reasons of their formation are intensive rainfall of short duration, location of river basin in mountain areas, and small catchment area, providing fast concentration of the runoff in river channel. Another significant factor is antecedent soil moisture. Flash floods are mostly spread in zones of subtropic, tropic and equatorial climate in the northern hemisphere. The study of flash floods is implemented in various fields of science due to hydrometeorological and lythogeomorphological causes of their formation. The important task is the differentiation of flash floods and debris flows. It can be based on the relations between sediment yield and sediments grain size and runoff characteristics with a glance of sediments concentration. The scheme of natural factors of flash floods formation is suggested with their differentiation from debris flows and floods of other types. The main issues of flash floods research and forecast are connected with small spatio-temporal scale of phenomenon and remoteness of river basins.


2021 ◽  
Vol 13 (9) ◽  
pp. 1818
Author(s):  
Lisha Ding ◽  
Lei Ma ◽  
Longguo Li ◽  
Chao Liu ◽  
Naiwen Li ◽  
...  

Flash floods are among the most dangerous natural disasters. As climate change and urbanization advance, an increasing number of people are at risk of flash floods. The application of remote sensing and geographic information system (GIS) technologies in the study of flash floods has increased significantly over the last 20 years. In this paper, more than 200 articles published in the last 20 years are summarized and analyzed. First, a visualization analysis of the literature is performed, including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis, and literature co-citation analysis. Then, the application of remote sensing and GIS technologies to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the identification of flash flood disaster risk areas. Finally, the current research status is summarized, and the orientation of future research is also discussed.


2012 ◽  
Vol 13 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Pavel Ya. Groisman ◽  
Richard W. Knight ◽  
Thomas R. Karl

Abstract In examining intense precipitation over the central United States, the authors consider only days with precipitation when the daily total is above 12.7 mm and focus only on these days and multiday events constructed from such consecutive precipitation days. Analyses show that over the central United States, a statistically significant redistribution in the spectra of intense precipitation days/events during the past decades has occurred. Moderately heavy precipitation events (within a 12.7–25.4 mm day−1 range) became less frequent compared to days and events with precipitation totals above 25.4 mm. During the past 31 yr (compared to the 1948–78 period), significant increases occurred in the frequency of “very heavy” (the daily rain events above 76.2 mm) and extreme precipitation events (defined as daily and multiday rain events with totals above 154.9 mm or 6 in.), with up to 40% increases in the frequency of days and multiday extreme rain events. Tropical cyclones associated with extreme precipitation do not significantly contribute to the changes reported in this study. With time, the internal precipitation structure (e.g., mean and maximum hourly precipitation rates within each preselected range of daily or multiday event totals) did not noticeably change. Several possible causes of observed changes in intense precipitation over the central United States are discussed and/or tested.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.


2021 ◽  
Author(s):  
Marjanne Zander ◽  
Pety Viguurs ◽  
Frederiek Sperna Weiland ◽  
Albrecht Weerts

<p>Flash Floods are damaging natural hazards which often occur in the European Alps. Precipitation patterns and intensity may change in a future climate affecting their occurrence and magnitude. For impact studies, flash floods can be difficult to simulate due the complex orography and limited extent & duration of the heavy rainfall events which trigger them. The new generation convection-permitting regional climate models improve the intensity and frequency of heavy precipitation (Ban et al., 2021).</p><p>Therefore, this study combines such simulations with high-resolution distributed hydrological modelling to assess changes in flash flood frequency and occurrence over the Alpine terrain. We use the state-of-the-art Unified Model (Berthou et al., 2018) to drive a high-resolution distributed hydrological wflow_sbm model (e.g. Imhoff et al., 2020) covering most of the Alpine mountain range on an hourly resolution. Simulations of the future climate RCP 8.5 for the end-of-century (2096-2105) and current climate (1998-2007) are compared.</p><p>First, the wflow_sbm model was validated by comparing ERA5 driven simulation with streamflow observations (across Rhone, Rhine, Po, Adige and Danube). Second, the wflow_sbm simulation driven by UM simulation of the current climate was compared to a dataset of historical flood occurrences (Paprotny et al., 2018, Earth Syst. Sci. Data) to validate if the model can accurately simulate the location of the flash floods and to determine a suitable threshold for flash flooding. Finally, the future run was used to asses changes in flash flood frequency and occurrence. Results show an increase in flash flood frequency for the Upper Rhine and Adige catchments. For the Rhone the increase was less pronounced. The locations where the flash floods occur did not change much.</p><p>This research is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (https://www.eucp-project.eu/), which aims to support climate adaptation and mitigation decisions for the coming decades by developing a regional climate prediction and projection system based on high-resolution climate models for Europe.</p><p> </p><p>N. Ban, E. Brisson, C. Caillaud, E. Coppola, E. Pichelli, S. Sobolowski, …, M.J. Zander (2021): “The first multi-model ensemble of regional climate simulations at the kilometer-scale resolution, Part I: Evaluation of precipitation”, manuscript accepted for publication in Climate Dynamics.</p><p>S. Berthou, E.J. Kendon, S. C. Chan, N. Ban, D. Leutwyler, C. Schär, and G. Fosser, 2018, “Pan-european climate at convection-permitting scale: a model intercomparison study.” Climate Dynamics, pages 1–25, DOI: 10.1007/s00382-018-4114-6</p><p>Imhoff, R.O., W. van Verseveld, B. van Osnabrugge, A.H. Weerts, 2020. “Scaling point-scale pedotransfer functions parameter estimates for seamless large-domain high-resolution distributed hydrological modelling: An example for the Rhine river.” Water Resources Research, 56. Doi: 10.1029/2019WR026807</p><p>Paprotny, D., Morales Napoles, O., & Jonkman, S. N., 2018. "HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870". Earth System Science Data, 10, 565–581, https://doi.org/10.5194/essd-10-565-2018</p>


Sign in / Sign up

Export Citation Format

Share Document