scholarly journals Modeling Study of Ice Formation in Warm-Based Precipitating Shallow Cumulus Clouds

2012 ◽  
Vol 69 (11) ◽  
pp. 3315-3335 ◽  
Author(s):  
Jiming Sun ◽  
Parisa A. Ariya ◽  
Henry G. Leighton ◽  
Man Kong Yau

Abstract Observations of large concentrations of ice particles in the dissipating stage of warm-based precipitating shallow cumulus clouds point to the limitations of scientists’ understanding of the physics of such clouds and the possible role of cloud dynamics. The most commonly accepted mechanisms of ice splinter production in the riming process have limitations to properly explain the rapid production of ice bursts. A more detailed description of the temporal and spatial evolution of hydrometeors and their interaction with cloud condensation nuclei and ice nuclei is needed to understand this phenomenon. A cloud model with bin-resolved microphysics can describe the time-dependent evolution of liquid droplets and ice particles and provide insights into how the physics and dynamics and their interaction may result in ice initiation and ice multiplication. The authors developed a 1.5-dimensional nonhydrostatic convective cloud and aerosol interaction model with spectral (bin) microphysics. The number and mass concentrations of aerosols, including ice nuclei and cloud condensation nuclei, were explicitly followed. Since both in situ observations of bioaerosols and laboratory experiments pointed to efficient nucleation capabilities at relative warm temperatures, it was assumed that ice-nucleating bioaerosols are involved in primary ice particle formation in condensation and immersion modes. Results show that bioaerosols can be the source of primary ice pellets, which in turn lead to high ice concentrations.

2018 ◽  
Vol 75 (11) ◽  
pp. 4031-4047 ◽  
Author(s):  
Yign Noh ◽  
Donggun Oh ◽  
Fabian Hoffmann ◽  
Siegfried Raasch

Abstract Cloud microphysics parameterizations for shallow cumulus clouds are analyzed based on Lagrangian cloud model (LCM) data, focusing on autoconversion and accretion. The autoconversion and accretion rates, A and C, respectively, are calculated directly by capturing the moment of the conversion of individual Lagrangian droplets from cloud droplets to raindrops, and it results in the reproduction of the formulas of A and C for the first time. Comparison with various parameterizations reveals the closest agreement with Tripoli and Cotton, such as and , where and are the mixing ratio and the number concentration of cloud droplets, is the mixing ratio of raindrops, is the threshold volume radius, and H is the Heaviside function. Furthermore, it is found that increases linearly with the dissipation rate and the standard deviation of radius and that decreases rapidly with while disappearing at > 3.5 μm. The LCM also reveals that and increase with time during the period of autoconversion, which helps to suppress the early precipitation by reducing A with smaller and larger in the initial stage. Finally, is found to be affected by the accumulated collisional growth, which determines the drop size distribution.


2006 ◽  
Vol 6 (1) ◽  
pp. 67-80 ◽  
Author(s):  
A. Teller ◽  
Z. Levin

Abstract. Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN), giant CCN (GCCN) and Ice Nuclei (IN) on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations) produce less precipitation than clean clouds (with low CCN concentrations), the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN). The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils) when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.


2020 ◽  
Vol 20 (6) ◽  
pp. 3895-3904
Author(s):  
Gary Lloyd ◽  
Thomas Choularton ◽  
Keith Bower ◽  
Jonathan Crosier ◽  
Martin Gallagher ◽  
...  

Abstract. In this paper we show that the origin of the ice phase in tropical cumulus clouds over the sea may occur by primary ice nucleation of small crystals at temperatures just between 0 and −5 ∘C. This was made possible through use of a holographic instrument able to image cloud particles at very high resolution and small size (6 µm). The environment in which the observations were conducted was notable for the presence of desert dust advected over the ocean from the Sahara. However, there is no laboratory evidence to suggest that these dust particles can act as ice nuclei at temperatures warmer than about −10 ∘C, the zone in which the first ice was observed in these clouds. The small ice particles were observed to grow rapidly by vapour diffusion, riming, and possibly through collisions with supercooled raindrops, causing these to freeze and potentially shatter. This in turn leads to the further production of secondary ice in these clouds. Hence, although the numbers of primary ice particles are small, they are very effective in initiating the rapid glaciation of the cloud, altering the dynamics and precipitation production processes.


2020 ◽  
Vol 77 (2) ◽  
pp. 711-722
Author(s):  
Yefim Kogan ◽  
Mikhail Ovchinnikov

Abstract Two-moment autoconversion parameterizations as compared to accretion parameterizations exhibit significant errors suggesting that additional moments are needed to increase their accuracy. We develop a three-moment autoconversion parameterization using output from an LES model with size-resolved microphysics. Adding the third moment decreases the errors of parameterization and improves precipitation prediction. However, the errors are still significantly larger than errors of accretion rate. An analysis of the cloud drop size distributions (DSDs) in the simulated tropical convective cloud system reveals that most DSDs have a significant fraction of cloud liquid water content qc in the midsize droplet range (radii from 20 to 40 μm). Our data indicate that more than 30% of DSDs have over half of qc contained in the midsize range and about 60% of spectra have, at least, one-third of qc in this range. Even when the rain/drizzle mode is small (radar reflectivity Z < −10 dBZ), there is a significant number of spectra in which fraction of qc in the midsize range is as large as 60%. These DSDs are more complex than the frequently used gamma or lognormal distributions, which exhibit a single mode and can be defined by three microphysical moments. The need to define DSDs by more than three moments explains the large errors in the three-moment autoconversion parameterization. The limitation of three-parameter gamma or lognormal distributions should be kept in mind when applying them in precipitating shallow cumulus clouds.


2009 ◽  
Vol 9 (6) ◽  
pp. 24361-24410 ◽  
Author(s):  
V. Marécal ◽  
M. Pirre ◽  
E. D. Rivière ◽  
N. Pouvesle ◽  
J. N. Crowley ◽  
...  

Abstract. The present paper is a preliminary study preparing the introduction of reversible trace gas uptake by ice particles into a 3-D cloud resolving model. For this a 3-D simulation of a tropical deep convection cloud was run with the BRAMS cloud resolving model using a two-moment bulk microphysical parameterization. Trajectories encountering the convective clouds were computed from these simulation outputs along which the variations of the pristine ice, snow and aggregate mixing ratios and size distributions were extracted. The reversible uptake of 11 trace gases by ice was examined assuming applicability of Langmuir isotherms using recently evaluated (IUPAC) laboratory data. The results show that ice uptake is only significant for HNO3, HCl, CH3COOH and HCOOH. For H2O2, using new results for the partition coefficient results in significant partitioning to the ice phase for this trace gas also. It was also shown that the uptake is largely dependent on the temperature for some species. The adsorption saturation at the ice surface for large gas concentrations is generally not a limiting factor except for HNO3 and HCl for gas concentration greater than 1 ppbv. For HNO3, results were also obtained using a trapping theory, resulting in a similar order of magnitude of uptake, although the two approaches are based on different assumptions. The results were compared to those obtained using a BRAMS cloud simulation based on a single-moment microphysical scheme instead of the two moment scheme. We found similar results with a slightly more important uptake when using the single-moment scheme which is related to slightly higher ice mixing ratios in this simulation. The way to introduce these results in the 3-D cloud model is discussed.


2015 ◽  
Vol 72 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Cynthia H. Twohy

Abstract Mineral dust particles have been shown to act as cloud condensation nuclei, and they are known to interact with developing tropical storms over the Atlantic downwind of the Sahara. Once present within liquid droplets, they have the potential to act as freezing ice nuclei and further affect the microphysics, dynamics, and evolution of tropical storms. However, few measurements of mineral dust particles in tropical convective clouds exist. This study indicates that about one-third of droplets sampled in small convective clouds in the tropical eastern Atlantic contained dust particles, and dust was the dominant residual particle type sampled in ice crystals from anvil outflow. However, estimated number and mass concentrations of dust in anvil ice were small compared to the amount of dust available within the Saharan air layer itself.


2011 ◽  
Vol 11 (22) ◽  
pp. 11511-11519 ◽  
Author(s):  
D. C. Thornton ◽  
A. R. Bandy ◽  
J. G. Hudson

Abstract. During the Rain in (shallow) Cumulus over the Ocean (RICO) project simultaneous high rate sulfur dioxide (SO2) measurements and cloud condensation nuclei (CCN) spectra were made for the first time. For research flight 14 (14 January 2005) the convective boundary layer was impacted by precipitation and ship plumes for much of the midday period but not in the late afternoon. Number densities of accumulation mode aerosols (0.14 to 0.2 μm diameter) were a factor of two greater in the later period while CCN were 35% to 80% greater for aerosols that activate at supersaturations >0.1%. Linear correlations of SO2 and CCN were found for SO2 concentrations ranging from 20 to 600 parts-per-trillion (pptv). The greatest sensitivities were for SO2 and CCN that activate at supersaturations >0.1% for both clean and polluted air. In a region unaffected by pollution SO2 was linearly correlated only with CCN at >0.2% supersaturation. These correlations imply that the smallest CCN may be activated by SO2 through heterogeneous conversion. Evidence for entrainment of CCN from the cloud layer into the CBL was found.


2015 ◽  
Vol 72 (6) ◽  
pp. 2429-2445 ◽  
Author(s):  
R. Paul Lawson ◽  
Sarah Woods ◽  
Hugh Morrison

Abstract The rapid glaciation of tropical cumulus clouds has been an enigma and has been debated in the literature for over 60 years. Possible mechanisms responsible for the rapid freezing have been postulated, but until now direct evidence has been lacking. Recent high-speed photography of electrostatically suspended supercooled drops in the laboratory has shown that freezing events produce small secondary ice particles. Aircraft observations from the Ice in Clouds Experiment–Tropical (ICE-T), strongly suggest that the drop-freezing secondary ice production mechanism is operating in strong, tropical cumulus updraft cores. The result is the production of small ice particles colliding with large supercooled drops (hundreds of microns up to millimeters in diameter), producing a cascading process that results in rapid glaciation of water drops in the updraft. The process was analyzed from data collected using state-of-the-art cloud particle probes during 54 Learjet penetrations of strong cumulus updraft cores over open ocean in a temperature range from 5° to −20°C. Repeated Learjet penetrations of an updraft core containing 3–5 g m−3 supercooled liquid showed an order-of-magnitude decrease in liquid mass concentration 3 min later at an elevation 1–1.5 km higher in the cloud. The aircraft observations were simulated using a one-dimensional cloud model with explicit bin microphysics. The model was initialized with drop and ice particle size distributions observed prior to rapid glaciation. Simulations show that the model can explain the observed rapid glaciation by the drop-freezing secondary ice production process and subsequent riming, which results when large supercooled drops collide with ice particles.


Author(s):  
E. F. Mikhailov ◽  
O. A. Ivanova ◽  
E. Yu. Nebosko ◽  
S. S. Vlasenko ◽  
T. I. Ryshkevich

Bioparticles represent a significant fraction of the total atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of micrometers (plant pollen, vegetation residues) and like other atmospheric aerosol particles, the degree of involvement of bioaerosols in atmospheric processes largely de- pends on their hygroscopic and cloud condensation nuclei properties. In this paper the ability of the pine, birch and rape subpollen particles to act as cloud condensation nuclei are considered. Submicron particles were obtained by aqueous extraction of biological material from pollen grains and subsequent solidification of the atomized liquid droplets. The parameters of cloud activation are determined in the size range of 20-270 nm in the range of water vapor supersaturations 0.1-1.1%. Based on experimental results, the hygroscopicity parameter, characterizing the effect of the chemical composition of the subparticles on their con- densation properties, is determined. The range of the hygroscopic parameter changes was 0.12-0.13. In general, the results of measurements showed that the condensation activity of the subpollen particles is comparable with the condensation activity of secondary organic aerosols and weakly depends on the type of the primary pollen.


Sign in / Sign up

Export Citation Format

Share Document