scholarly journals Unraveling the Essential Effects of Flocculation on Large-Scale Sediment Transport Patterns in a Tide-Dominated Estuary

2020 ◽  
Vol 50 (7) ◽  
pp. 1957-1981 ◽  
Author(s):  
Dante M. L. Horemans ◽  
Yoeri M. Dijkstra ◽  
Henk M. Schuttelaars ◽  
Patrick Meire ◽  
Tom J. S. Cox

AbstractSediment transport in estuaries and the formation of estuarine turbidity maxima (ETM) highly depend on the ability of suspended particulate matter (SPM) to flocculate into larger aggregates. While most literature focuses on the small-scale impact of biological flocculants on the formation of larger aggregates, the influence of the flocculation process on large-scale estuarine SPM profiles is still largely unknown. In this paper, we study the impact of flocculation of SPM on the formation of ETM. For this, a semianalytical width-integrated model called iFlow is utilized and extended by a flocculation model. Starting from a complex one-class flocculation model, we show that flocculation may be described as a linear relation between settling velocity and suspended sediment concentration to capture its leading-order effect on the ETM formation. The model is applied to a winter case in the Scheldt estuary (Belgium, Netherlands) and calibrated to a unique, long-term, two-dimensional set of turbidity (cf. SPM) observations. First, model results with and without the effect of flocculation are compared, showing that the spatial and temporal variations of the settling velocity due to flocculation are essential to reproduce the observed magnitude of the suspended sediment concentrations and its dependence on river discharge. Second, flocculation results in tidally averaged land-inward sediment transport. Third, we conduct a sensitivity analysis of the freshwater discharge and floc breakup parameter, which shows that flocculation can cause additional estuarine turbidity maxima and can prevent flushing of the ETM for high freshwater inflow.

2021 ◽  
Vol 8 ◽  
Author(s):  
Kaveh Purkiani ◽  
Benjamin Gillard ◽  
André Paul ◽  
Matthias Haeckel ◽  
Sabine Haalboom ◽  
...  

Predictability of the dispersion of sediment plumes induced by potential deep-sea mining activities is still very limited due to operational limitations on in-situ observations required for a thorough validation and calibration of numerical models. Here we report on a plume dispersion experiment carried out in the German license area for the exploration of polymetallic nodules in the northeastern tropical Pacific Ocean in 4,200 m water depth. The dispersion of a sediment plume induced by a small-scale dredge experiment in April 2019 was investigated numerically by employing a sediment transport module coupled to a high-resolution hydrodynamic regional ocean model. Various aspects including sediment characteristics and ocean hydrodynamics were examined to obtain the best statistical agreement between sensor-based observations and model results. Results show that the model is capable of reproducing suspended sediment concentration and redeposition patterns observed during the dredge experiment. Due to a strong southward current during the dredging, the model predicts no sediment deposition and plume dispersion north of the dredging tracks. The sediment redeposition thickness reaches up to 9 mm directly next to the dredging tracks and 0.07 mm in about 320 m away from the dredging center. The model results suggest that seabed topography and variable sediment release heights above the seafloor cause significant changes especially for the low sedimentation pattern in the far-field area. Near-bottom mixing is expected to strongly influence vertical transport of suspended sediment.


2018 ◽  
Author(s):  
Jérémy Lepesqueur ◽  
Renaud Hostache ◽  
Núria Martínez-Carreras ◽  
Emmanuelle Montargès-Pelletier ◽  
Christophe Hissler

Abstract. Hydromorphodynamic models are powerful tools to predict the potential mobilization and transport of sediment in river ecosystems. Recent studies even showed that they are able to satisfyingly predict suspended sediment matter concentration in small river systems. However, modelling exercises often neglect suspended sediment properties (e.g. particle site distribution and density), even though such properties are known to directly control the sediment particle dynamics in the water column during rising and flood events. This study has two objectives. On the one hand, it aims at further developing an existing hydromorphodynamic model based on the dynamic coupling of TELEMAC-3D (v7p1) and SISYPHE (v7p1) in order to enable an enhanced parameterisation of the sediment grain size distribution with distributed sediment density. On the other hand, it aims at evaluating and discussing the added-value of the new development for improving sediment transport and riverbed evolution predictions. To this end, we evaluate the sensitivity of the model to sediment grain size distribution, sediment density and suspended sediment concentration at the upstream boundary condition. As a test case, the model is used to simulate a flood event in a small scale river, the Orne River in North-eastern France. The results show substantial discrepancies in bathymetry evolution depending on the model setup. Moreover, the sediment model based on an enhanced sediment grain size distribution (10 classes) and with distributed sediment density outperforms the model with only two sediment grain size classes in terms of simulated suspended sediment concentration.


2020 ◽  
Vol 8 (11) ◽  
pp. 910
Author(s):  
Irene Colosimo ◽  
Paul L. M. de Vet ◽  
Dirk S. van Maren ◽  
Ad J. H. M. Reniers ◽  
Johan C. Winterwerp ◽  
...  

Sediment transport over intertidal flats is driven by a combination of waves, tides, and wind-driven flow. In this study we aimed at identifying and quantifying the interactions between these processes. A five week long dataset consisting of flow velocities, waves, water depths, suspended sediment concentrations, and bed level changes was collected at two locations across a tidal flat in the Wadden Sea (The Netherlands). A momentum balance was evaluated, based on field data, for windy and non-windy conditions. The results show that wind speed and direction have large impacts on the net flow, and that even moderate wind can reverse the tidal flow. A simple analytical tide–wind interaction model shows that the wind-induced reversal can be predicted as a function of tidal flow amplitude and wind forcing. Asymmetries in sediment transport are not only related to the tide–wind interaction, but also to the intratidal asymmetries in sediment concentration. These asymmetries are influenced by wind-induced circulation interacting with the large scale topography. An analysis of the shear stresses induced by waves and currents revealed the relative contributions of local processes (resuspension) and large-scale processes (advection) at different tidal flat elevations.


2013 ◽  
Vol 1 (1) ◽  
pp. 437-481 ◽  
Author(s):  
I. Klassen ◽  
G. Hillebrand ◽  
N. R. B. Olsen ◽  
S. Vollmer ◽  
B. Lehmann ◽  
...  

Abstract. The prediction of cohesive sediment transport requires numerical models which include the dominant physico-chemical processes of fine sediments. Mainly in terms of simulating small scale processes, flocculation of fine particles plays an important role since aggregation processes affect the transport and settling of fine-grained particles. Flocculation algorithms used in numerical models are based on and calibrated using experimental data. A good agreement between the results of the simulation and the measurements is a prerequisite for further applications of the transport functions. In this work, the sediment transport model (SSIIM) was extended by implementing a physics-based aggregation process model based on McAnally (1999). SSIIM solves the Navier-Stokes-Equations in a three-dimensional, non-orthogonal grid using the k-ε turbulence model. The program calculates the suspended load with the convection-diffusion equation for the sediment concentration. Experimental data from studies in annular flumes (Hillebrand, 2008; Klassen, 2009) is used to test the flocculation algorithm. Annular flumes are commonly used as a test rig for laboratory studies on cohesive sediments since the flocculation processes are not interfered with by pumps etc. We use the experiments to model measured floc sizes, affected by aggregation processes, as well as the sediment concentration of the experiment. Within the simulation of the settling behavior, we use different formulas for calculating the settling velocity (Stokes, 1850 vs. Winterwerp, 1998) and include the fractal dimension to take into account the structure of flocs. The aim of the numerical calculations is to evaluate the flocculation algorithm by comparison with the experimental data. The results from these studies have shown, that the flocculation process and the settling behaviour are very sensitive to variations in the fractal dimension. We get the best agreement with measured data by adopting a characteristic fractal dimension nfc to 1.4. Insufficient results were obtained when neglecting flocculation processes and using Stokes settling velocity equation, as it is often done in numerical models which do not include a flocculation algorithm. These numerical studies will be used for further applications of the transport functions to the SSIIM model of reservoirs of the Upper Rhine River, Germany.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 192 ◽  
Author(s):  
Yuting Li ◽  
Zhiyao Song ◽  
Guoqiang Peng ◽  
Xuwen Fang ◽  
Ruijie Li ◽  
...  

This study presents an incorporation and application of a two-dimensional, unstructured-grid hydrodynamic model with a suspended sediment transport module in Daishan, China. The model is verified with field measurement data from 2017: water level, flow velocities and suspended sediment concentration (SSC). In the application on the Daishan, the performance of the hydrodynamic model has been satisfactorily validated against observed variations of available measurement stations. Coupled with the hydrodynamic model, a sediment transport model has been developed and tested. The simulations agreed quantitatively with the observations. The validated model was applied to the construction of breakwaters and docks under a different plan. The model can calculate the flow field and siltation situation under different breakwater settings. After we have analyzed the impact of existing breakwater layout schemes and sediment transport, a reasonable plan will be selected. The results show that the sea area near the north of Yanwo Shan and Dongken Shan has a large flow velocity exceeding 2.0 m/s and the flow velocity within the isobath of 5 m is small, within 0.6 m/s. According to the sediment calculation, the dock project is feasible. However, the designed width of the fairway should be increased to ensure the navigation safety of the ship according to variation characteristics of cross flow velocity in channel.


2016 ◽  
Vol 31 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Kaouther Selmi ◽  
Kamel Khanchoul

AbstractSoil erosion by water and the impact of sediment transport on lakes and streams, can seriously degrade soil and create problems for both agricultural land and water quality. The present study has been carried out to assess suspended sediment yield in Mellegue catchment, northeast of Algeria. Regression analysis was used to establish a relationship between the instantaneous water discharge (Q) and the instantaneous suspended sediment concentration (C) based on all recorded data and seasonal ratings for the period 1970–2003. The regression technique used in this paper involved a division of data into discharge – based classes, the mean concentrations and discharges of which are used to develop power regressions, according to single and season ratings, through log-transformation. Sediment loads estimated by stratified rating curves reduced underestimations to a range from 2 to 4%. The mean annual sediment yield during the 34 years of the study period was 589.23 t·km−2·y−1. Sediment transport is dominated by fall rainstorms accounting for 41% of the annual load. The big supply of sediment during this season confirms the intense geomorphic work by fall storms caused by high intensity rainfall and low vegetation cover.


Author(s):  
Davide Bonaldo ◽  
Alvise Benetazzo ◽  
Andrea Bergamasco ◽  
Francesco Falcieri ◽  
Sandro Carniel ◽  
...  

AbstractThe shallow, gently sloping, sandy-silty seabed of the Venetian coast (Italy) is studded by a number of outcropping rocky systems of different size encouraging the development of peculiar zoobenthic biocenoses with considerably higher biodiversity indexes compared to neighbouring areas. In order to protect and enhance the growth of settling communities, artificial monolithic reefs were deployed close to the most important formations, providing further nesting sites and mechanical hindrance to illegal trawl fishing.In this framework, a multi-step and multi-scale numerical modelling activity was carried out to predict the perturbations induced by the presence of artificial structures on sediment transport over the outcroppings and their implications on turbidity and water quality. After having characterized wave and current circulation climate at the sub-basin scale over a reference year, a set of small scale simulations was carried out to describe the effects of a single monolith under different geometries and hydrodynamic forcings, encompassing the conditions likely occurring at the study sites. A dedicated tool was then developed to compose the information contained in the small-scale database into realistic deployment configurations, and applied in four protected outcroppings identified as test sites. With reference to these cases, under current meteomarine climate the application highlighted a small and localised increase in suspended sediment concentration, suggesting that the implemented deployment strategy is not likely to produce harmful effects on turbidity close to the outcroppings.In a broader context, the activity is oriented at the tuning of a flexible instrument for supporting the decision-making process in benthic environments of outstanding environmental relevance, especially in the Integrated Coastal Zone Management or Maritime Spatial Planning applications. The dissemination of sub-basin scale modelling results via the THREDDS Data Server, together with an user-friendly software for composing single-monolith runs and a graphical interface for exploring the available data, significantly improves the quantitative information collection and sharing among scientists, stakeholders and policy-makers.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


Author(s):  
I. Smyrnov

Rural tourism is now seen as an important direction of development of the regional economy. From the perspective of sustainable development rural tourism affects the economic, social and environmental aspects of the regional and local economy. Rural tourism is closely linked with agrotourism, eco-tourism, natural tourism and so on. Sustainable rural tourism can be realized by applying logistic, geographic and marketing approaches as components of sustainable development strategies. Logistics approach is determined by logistic potential of resource base of rural tourism and appropriate tourist flows regulation. In this context in the article the concept of tourism capacity or capacity of the resource base of rural tourism is used. The problem of the definition of tourism pressure on the resource base of rural tourism, particularly in natural landscapes is disclosed. Unlike environmental and recrealogical sciences, which stop at the capacity definition of the resource base of tourism, tourism logistics compares this figure with the existing tourist flows and accordingly determines the safe way of tourism management to ensure its sustainable nature. It was shown that these strategies boil down to two basic types – the further development of tourism in a particular area or limit such activities to conserve the resource base of tourism. Recreational (travel) load is the indicator that reflects the impact of tourism on the resource base of tourism (especially landscape complex), expressed by the number of tourists or tourists-days per area unit or per tourist site for the certain period of time (day, month, season year). There are actual, allowable (the maximum) and destructive (dangerous) types of travel load. The latter can lead recreational area or resource base of rural tourism to destruction. Thus, depending on the intensity of tourism resource base using in rural tourism it may change – according to tourist consumption. Large number of tourists affects the entire range of recreational destinations and their individual components. The most vulnerable part of the environment in this sense is vegetation, except that significant changes may occur with soil, water bodies, air and so on. The geographic dimension of the problem of rural tourism sustainable development includes the concept of zoning, ie the division of the territory, offering to develop rural tourism in several zones with different modes of travel usage – from a total ban (in protected areas) for complete freedom with transitional stages, involving various limit degrees in the development of rural tourism. Marketing approach reflects the application of the curve R. Butler to the stages of development of rural tourism destinations with the release of such steps as: research, involvement, development, consolidation, stagnation (also called “saturation”), revival or decline. Shown the models that link the stage of resource base tourist development (under “Curve Butler”), strength of tourism consumption the magnitude of such effects (eg weak (disperse) impact in large scale, strong (concentrated) impact in large scale, strong (concentrated) impact in small scale, weak (disperse) impact in small scale), dynamics of tourism development at the territory.


2016 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 km up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PBytes of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Center (LRZ) in Garching, Germany. About 140 TBytes of post-processed data are stored on the CINECA supercomputing center archives and are freely accessible to the community thanks to an EUDAT Data Pilot project. This paper presents the technical and scientific setup of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given: an improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increases is observed. It is also shown that including stochastic parameterisation in the low resolution runs helps to improve some aspects of the tropical climate – specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).


Sign in / Sign up

Export Citation Format

Share Document