scholarly journals Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part II: Airborne-to-Airborne Systems

2007 ◽  
Vol 24 (1) ◽  
pp. 22-39 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Thorsten Schaberl ◽  
Hans-Stefan Bauer ◽  
Christoph Kiemle ◽  
...  

Abstract The dataset of the International H2O Project (IHOP_2002) gives the first opportunity for direct intercomparisons of airborne water vapor lidar systems and allows very important conclusions to be drawn for future field campaigns. Three airborne differential absorption lidar (DIAL) systems were operated simultaneously during some IHOP_2002 missions: the DIAL of Deutsches Zentrum für Luft- und Raumfahrt (DLR), the Lidar Atmospheric Sensing Experiment (LASE) of the National Aeronautics and Space Administration (NASA) Langley Research Center, and the Lidar Embarque pour l’etude des Aerosols et des Nuages de l’interaction Dynamique Rayonnement et du cycle de l’Eau (LEANDRE II) of the Centre National de la Recherche Scientifique (CNRS). Data of one formation flight with DLR DIAL and LEANDRE II were investigated, which consists of 54 independent profiles of the two instruments measured with 10-s temporal average. For the height range of 1.14–1.64 km above sea level, a bias of (−0.41 ± 0.16) g kg−1 or −7.9% ± 3.1% was found for DLR DIAL compared to LEANDRE II (LEANDRE II drier) as well as root-mean-square (RMS) deviations of (0.87 ± 0.18) g kg−1 or 16.9% ± 3.5%. With these results, relative bias values of −9.3%, −1.5%, +2.7%, and +8.1% result for LEANDRE II, DLR DIAL, the scanning Raman lidar (SRL), and LASE, respectively, using the mutual bias values determined in Part I for the latter three sensors. From the three possible profile-to-profile intercomparisons between DLR DIAL and LASE, one case cannot provide information on the system performances due to very large inhomogeneity of the atmospheric water vapor field, while one of the two remaining two cases showed a difference of −4.6% in the height range of 1.4–3.0 km and the other of −25% in 1.3–3.8 km (in both cases DLR DIAL was drier than LASE). The airborne-to-airborne comparisons showed that if airborne water vapor lidars are to be validated down to an accuracy of better than 5% in the lower troposphere, the atmospheric variability of water vapor has to be taken into account down to scales of less than a kilometer unless a sufficiently large number of intercomparison cases is available to derive statistically solid biases and RMS deviations. In conclusion, the overall biases between the water vapor data of all three airborne lidar systems operated during IHOP_2002 are smaller than 10% in the present stage of data evaluation, which confirms the previous estimates of the instrumental accuracies for all the systems.

2008 ◽  
Vol 25 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Thierry Leblanc ◽  
I. Stuart McDermid ◽  
Robin A. Aspey

Abstract A new water vapor Raman lidar was recently built at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL) in California and more than a year of routine 2-h-long nighttime measurements 4–5 times per week have been completed. The lidar was designed to reach accuracies better than 5% anywhere up to 12-km altitude, and with the capability to measure water vapor mixing ratios as low as 1 to 10 ppmv near the tropopause and in the lower stratosphere. The current system is not yet fully optimized but has already shown promising results as water vapor profiles have been retrieved up to 18-km altitude. Comparisons with Vaisala RS92K radiosondes exhibit very good agreement up to at least 10 km. They also revealed a wet bias in the lidar profiles (or a dry bias in the radiosonde profiles), increasing with altitude and becoming significant near 10 km and large when approaching the tropopause. This bias cannot be explained solely by well-known too-dry measurements of the RS92K in the upper troposphere and therefore must partly originate in the lidar measurements. Excess signal due to residual fluorescence in the lidar receiver components is among the most likely candidates and is subject to ongoing investigation.


2017 ◽  
Vol 10 (7) ◽  
pp. 2745-2758 ◽  
Author(s):  
Leslie David ◽  
Olivier Bock ◽  
Christian Thom ◽  
Pierre Bosser ◽  
Jacques Pelon

Abstract. We have investigated calibration variations in the Rameau water vapor Raman lidar. This lidar system was developed by the Institut National de l'Information Géographique et Forestière (IGN) together with the Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). It aims at calibrating Global Navigation Satellite System (GNSS) measurements for tropospheric wet delays and sounding the water vapor variability in the lower troposphere. The Rameau system demonstrated good capacity in retrieving water vapor mixing ratio (WVMR) profiles accurately in several campaigns. However, systematic short-term and long-term variations in the lidar calibration factor pointed to persistent instabilities. A careful testing of each subsystem independently revealed that these instabilities are mainly induced by mode fluctuations in the optic fiber used to couple the telescope to the detection subsystem and by the spatial nonuniformity of the photomultiplier photocathodes. Laboratory tests that replicate and quantify these instability sources are presented. A redesign of the detection subsystem is presented, which, combined with careful alignment procedures, is shown to significantly reduce the instabilities. Outdoor measurements were performed over a period of 5 months to check the stability of the modified lidar system. The calibration changes in the detection subsystem were monitored with lidar profile measurements using a common nitrogen filter in both Raman channels. A short-term stability of 2–3 % and a long-term drift of 2–3 % per month are demonstrated. Compared to the earlier Development of Methodologies for Water Vapour Measurement (DEMEVAP) campaign, this is a 3-fold improvement in the long-term stability of the detection subsystem. The overall water vapor calibration factors were determined and monitored with capacitive humidity sensor measurements and with GPS zenith wet delay (ZWD) data. The changes in the water vapor calibration factors are shown to be fairly consistent with the changes in the nitrogen calibration factors. The nitrogen calibration results can be used to correct the overall calibration factors without the need for additional water vapor measurements to within 1 % per month.


2012 ◽  
Vol 5 (1) ◽  
pp. 17-36 ◽  
Author(s):  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. Recognizing the importance of water vapor in the upper troposphere and lower stratosphere (UTLS) and the scarcity of high-quality, long-term measurements, JPL began the development of a powerful Raman lidar in 2005 to try to meet these needs. This development was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC) and the validation program for the EOS-Aura satellite. In this paper we review the stages in the instrumental development, data acquisition and analysis, profile retrieval and calibration procedures of the lidar, as well as selected results from three validation campaigns: MOHAVE (Measurements of Humidity in the Atmosphere and Validation Experiments), MOHAVE-II, and MOHAVE 2009. In particular, one critical result from this latest campaign is the very good agreement (well below the reported uncertainties) observed between the lidar and the Cryogenic Frost-Point Hygrometer in the entire lidar range 3–20 km, with a mean bias not exceeding 2% (lidar dry) in the lower troposphere, and 3% (lidar moist) in the UTLS. Ultimately the lidar has demonstrated capability to measure water vapor profiles from ∼1 km above the ground to the lower stratosphere with a precision of 10% or better near 13 km and below, and an estimated accuracy of 5%. Since 2005, nearly 1000 profiles have been routinely measured, and since 2009, the profiles have typically reached 14 km for one-hour integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions. These performance figures show that, with our present target of routinely running our lidar two hours per night, 4 nights per week, we can achieve measurements with a precision in the UTLS equivalent to that achieved if launching one CFH per month.


2021 ◽  
Vol 14 (4) ◽  
pp. 2827-2840
Author(s):  
David R. Thompson ◽  
Brian H. Kahn ◽  
Philip G. Brodrick ◽  
Matthew D. Lebsock ◽  
Mark Richardson ◽  
...  

Abstract. The subgrid spatial variability of water vapor is an important geophysical parameter for modeling tropical convention and cloud processes in atmospheric models. This study maps sub-kilometer spatial structures in total atmospheric column water vapor with visible to shortwave infrared (VSWIR) imaging spectroscopy. We describe our inversion approach and validate its accuracy with coincident measurements by airborne imaging spectrometers and the AERONET ground-based observation network. Next, data from NASA's AVIRIS-NG spectrometer enable the highest-resolution measurement to date of water vapor's spatial variability and scaling properties. We find second-order structure function scaling exponents consistent with prior studies of convective atmospheres. Airborne lidar data show that this total column measurement provides information about variability in the lower troposphere. We conclude by discussing the implications of these measurements and paths toward future campaigns to build upon these results.


2011 ◽  
Vol 4 (6) ◽  
pp. 7337-7403 ◽  
Author(s):  
D. N. Whiteman ◽  
M. Cadirola ◽  
D. Venable ◽  
M. Calhoun ◽  
L. Miloshevich ◽  
...  

Abstract. The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE mobile laboratory in the MOHAVE-2009 campaign. In an appendix we also report on the performance of the corrected Vaisala RS92 radiosonde during the campaign. A new radiosonde based calibration algorithm is presented that reduces the influence of atmospheric variability on the derived calibration constant. The MOHAVE-2009 campaign permitted all Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated revealing that wet biases in upper tropospheric and lower stratospheric water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the data. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most resistant to additional noise sources. The correction shown here holds promise for permitting useful upper tropospheric water vapor profiles to be consistently measured by Raman lidar within NDACC and elsewhere despite the prevalence of instrumental and atmospheric effects that can contaminate the very low signal to noise measurements in the UT.


2010 ◽  
Vol 27 (12) ◽  
pp. 2017-2030 ◽  
Author(s):  
Andreas Schäfler ◽  
Andreas Dörnbrack ◽  
Christoph Kiemle ◽  
Stephan Rahm ◽  
Martin Wirth

Abstract The first collocated measurements during THORPEX (The Observing System Research and Predictability Experiment) regional campaign in Europe in 2007 were performed by a novel four-wavelength differential absorption lidar and a scanning 2-μm Doppler wind lidar on board the research aircraft Falcon of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). One mission that was characterized by exceptionally high data coverage (47% for the specific humidity q and 63% for the horizontal wind speed υh) was selected to calculate the advective transport of atmospheric moisture qυh along a 1600-km section in the warm sector of an extratropical cyclone. The observations are compared with special 1-hourly model data calculated by the ECMWF integrated forecast system. Along the cross section, the model underestimates the wind speed on average by −2.8% (−0.6 m s−1) and overestimates the moisture at dry layers and in the boundary layer, which results in a wet bias of 17.1% (0.2 g kg−1). Nevertheless, the ECMWF model reproduces quantitatively the horizontally averaged moisture transport in the warm sector. There, the superposition of high low-level humidity and the increasing wind velocities with height resulted in a deep tropospheric layer of enhanced water vapor transport qυh. The observed moisture transport is variable and possesses a maximum of qυh = 130 g kg−1 m s−1 in the lower troposphere. The pathways of the moisture transport from southwest via several branches of different geographical origin are identified by Lagrangian trajectories and by high values of the vertically averaged tropospheric moisture transport.


2020 ◽  
Vol 37 (1) ◽  
pp. 47-65 ◽  
Author(s):  
R. K. Newsom ◽  
D. D. Turner ◽  
R. Lehtinen ◽  
C. Münkel ◽  
J. Kallio ◽  
...  

AbstractThe performance of a novel water vapor broadband differential absorption lidar (BB-DIAL) is evaluated. This compact, eye-safe, diode-laser-based prototype was developed by Vaisala. It was designed to operate unattended in all weather conditions and to provide height-resolved measurements of water vapor mixing ratio in the lower troposphere. Evaluation of the Vaisala prototype was carried out at the U.S. Department of Energy’s Atmospheric Radiation Measurement site in north-central Oklahoma (i.e., the Southern Great Plains site) from 15 May to 12 June 2017. BB-DIAL measurements were compared with observations from radiosondes that were launched within 200 m of the BB-DIAL’s location. Radiosonde measurements are also compared with observations from a collocated Raman lidar and an Atmospheric Emitted Radiance Interferometer. During the evaluation period, the BB-DIAL operated continuously and did not experience any failures or malfunctions. The data availability was greater than 90% below 900 m but then decreased rapidly with height above this level to less than 10% above 1500 m AGL. From 106 radiosonde profiles, the overall mean difference (averaged temporally and vertically up to 1500 m) between the BB-DIAL and the radiosonde was −0.01 g kg−1, with a standard deviation of 0.65 g kg−1, and a linear correlation coefficient of 0.98. For comparison, the overall mean difference between the Raman lidar and the radiosonde was 0.07 g kg−1, with a standard deviation of 0.74 g kg−1, and a linear correlation coefficient of 0.97.


2011 ◽  
Vol 28 (9) ◽  
pp. 1141-1148 ◽  
Author(s):  
Ryan Reynolds Neely ◽  
Jeffrey P. Thayer

Abstract A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor through the troposphere. A balloon campaign was simultaneously conducted to calibrate and validate the new lidar water vapor measurements. Initial results show that height-resolved profiles up to 10 km with better than 10% error are obtained with 30-min integration and 250-m height resolution. Comparison of the lidar observations with water vapor profiles retrieved by the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite agree within the error associated with each measurement. These new observations offer more routine measurements of water vapor in the Arctic to complement measurements related to the Arctic’s hydrologic cycle.


2019 ◽  
Vol 12 (1) ◽  
pp. 313-326 ◽  
Author(s):  
Tetsu Sakai ◽  
Tomohiro Nagai ◽  
Toshiharu Izumi ◽  
Satoru Yoshida ◽  
Yoshinori Shoji

Abstract. We developed an automated compact mobile Raman lidar (MRL) system for measuring the vertical distribution of the water vapor mixing ratio (w) in the lower troposphere, which has an affordable cost and is easy to operate. The MRL was installed in a small trailer for easy deployment and can start measurement in a few hours, and it is capable of unattended operation for several months. We describe the MRL system and present validation results obtained by comparing the MRL-measured data with collocated radiosonde, Global Navigation Satellite System (GNSS), and high-resolution objective analysis data. The comparison results showed that MRL-derived w agreed within 10 % (root-mean-square difference of 1.05 g kg−1) with values obtained by radiosonde at altitude ranges between 0.14 and 1.5 km in the daytime and between 0.14 and 5–6 km at night in the absence of low clouds; the vertical resolution of the MRL measurements was 75–150 m, their temporal resolution was less than 20 min, and the measurement uncertainty was less than 30 %. MRL-derived precipitable water vapor values were similar to or slightly lower than those obtained by GNSS at night, when the maximum height of MRL measurements exceeded 5 km. The MRL-derived w values were at most 1 g kg−1 (25 %) larger than local analysis data. A total of 4 months of continuous operation of the MRL system demonstrated its utility for monitoring water vapor distributions in the lower troposphere.


2018 ◽  
Author(s):  
Tetsu Sakai ◽  
Tomohiro Nagai ◽  
Toshiharu Izumi ◽  
Satoru Yoshida ◽  
Yoshinori Shoji

Abstract. To improve the lead time and accuracy of predictions of localized heavy rainfall, which can cause extensive damage in urban areas in Japan, we developed a mobile Raman lidar (RL) system for measuring the vertical distribution of the water vapor mixing ratio (w) in the lower troposphere. The RL was installed in a small trailer for easy deployment to the upwind side of potential rainfall areas to monitor the inflow of moist air before rainfall events. We describe the lidar system and present validation results obtained by comparing the RL-measured data with collocated radiosonde, Global Navigation Satellite System (GNSS), and high-resolution objective analysis data. The comparison results showed that RL-derived w agreed within 10 % with values obtained by radiosonde at altitude ranges between 0.14 and 1.5 km in the daytime and between 0.14 and 5–6 km at night in the absence of low clouds; the vertical resolution of the RL measurements was 75–150 m, their temporal resolution was less than 20 min, and the measurement uncertainty was less than 30 %. RL-derived precipitable water vapor values were similar to or slightly lower than those obtained by GNSS at night, when the maximum height of RL measurements exceeded 5 km. The RL-derived w values were at most 1 g/kg (25 %) larger than local analysis data. Four months of continuous operation of the RL system demonstrated its utility for monitoring water vapor distributions for heavy rain forecasting.


Sign in / Sign up

Export Citation Format

Share Document