scholarly journals The 30 May 1998 Spencer, South Dakota, Storm. Part I: The Structural Evolution and Environment of the Tornadoes

2005 ◽  
Vol 133 (1) ◽  
pp. 72-97 ◽  
Author(s):  
Curtis R. Alexander ◽  
Joshua Wurman

Abstract On the evening of 30 May 1998 atmospheric conditions across southeastern South Dakota led to the development of organized moist convection including several supercells. One such supercell was tracked by both a Weather Surveillance Radar-1988 Doppler (WSR-88D) from Sioux Falls, South Dakota (KFSD), and by a Doppler On Wheels (DOW) mobile radar. This supercell remained isolated for an hour and a half before being overtaken by a developing squall line. During this time period the supercell produced at least one strong and one violent tornado, the latter of which passed through Spencer, South Dakota, despite the absence of strong low-level environmental wind shear. The two tornadoes were observed both visually and with the DOW radar at ranges between 1.7 and 12.9 km. The close proximity to the tornadoes permitted the DOW radar to observe tornado-scale structures on the order of 35 to 100 m, while the nearest WSR-88D only resolved the parent mesocyclone in the supercell. The DOW observations revealed a persistent Doppler velocity couplet and associated ring reflectivity signature at the tip of the hook echo. The DOW radar data contained tornado strength winds over 35 m s−1 within 100 m AGL approximately 180 s prior to both the first spotter report and visual confirmation of the first tornado associated with this supercell. Following the formation of the second tornado, the DOW radar observations revealed a tornado-strength Doppler velocity couplet within 150 m AGL between two separate tornado tracks determined by a National Weather Service (NWS) damage survey. Based upon the DOW Doppler velocity data it appears that the second and third damage tracks from this supercell are produced from a single tornado. The time–height evolution of the Doppler velocity couplet spanning both tornadoes revealed a gradual increase in vertical vorticity across each tornado's core region within a few hundred meters AGL from near 0.2 to over 2.0 s−1 over a 45-min period. A corresponding reduction in vertical vorticity was observed aloft especially near 1000 m AGL where vorticity values decreased from near 1.0 to about 0.5 s−1 during this same time interval. The shear across the Doppler velocity couplet appears to undergo strengthening both at the surface and aloft during both tornadoes. An oscillatory fluctuation in the near-surface shear across the tornado core developed during the second tornado, with peak shear values as high as 206 m s−1, Doppler velocities over 106 m s−1, and peak ground-relative wind speeds reaching 118 m s−1. The period of this intensity oscillation appears to be around 120 s and was most prominent just prior to and during the passage of the tornado through Spencer. Coincident with the tornado passage through Spencer was a rapid descending of the reflectivity eye in the core of the tornado. A detailed comparison of surveyed tornado damage and radar-calculated tornado winds in Spencer is discussed in Part II.

2003 ◽  
Vol 131 (8) ◽  
pp. 1811-1831 ◽  
Author(s):  
Lawrence D. Carey ◽  
Walter A. Petersen ◽  
Steven A. Rutledge

Abstract On 30 May 1998, a tornado devastated the town of Spencer, South Dakota. The Spencer tornado (rated F4 on the Fujita tornado intensity scale) was the third and most intense of five tornadoes produced by a single supercell storm during an approximate 1-h period. The supercell produced over 76% positive cloud-to-ground (CG) lightning and a peak positive CG flash rate of 18 flashes min−1 (5-min average) during a 2-h period surrounding the tornado damage. Earlier studies have reported anomalous positive CG lightning activity in some supercell storms producing violent tornadoes. However, what makes the CG lightning activity in this tornadic storm unique is the magnitude and timing of the positive ground flashes relative to the F4 tornado. In previous studies, supercells dominated by positive CG lightning produced their most violent tornado after they attained their maximum positive ground flash rate, whenever the rate exceeded 1.5 flashes min−1. Further, tornadogenesis often occurred during a lull in CG lightning activity and sometimes during a reversal from positive to negative polarity. Contrary to these findings, the positive CG lightning flash rate and percentage of positive CG lightning in the Spencer supercell increased dramatically while the storm was producing F4 damage on Spencer. These results have important implications for the use of CG lightning in the nowcasting of tornadoes and for the understanding of cloud electrification in these unique storms. In order to further explore these issues, the authors present detailed analyses of storm evolution and structure using Sioux Falls, South Dakota, (KFSD) Weather Surveillance Radar-1988 Doppler (WSR-88D) radar reflectivity and Doppler velocity and National Lightning Detection Network (NLDN) CG lightning data. The analyses suggest that a merger between the Spencer supercell and a squall line on its rear flank may have provided the impetus for both the F4 tornadic damage and the dramatic increase in positive CG lightning during the tornado, possibly explaining the difference in timing compared to past studies.


2021 ◽  
Author(s):  
Michael Haugeneder ◽  
Tobias Jonas ◽  
Dylan Reynolds ◽  
Michael Lehning ◽  
Rebecca Mott

<p>Snowmelt runoff predictions in alpine catchments are challenging because of the high spatial variability of t<span>he snow cover driven by </span>various snow accumulation and ablation processes. In spring, the coexistence of bare and snow-covered ground engages a number of processes such as the enhanced lateral advection of heat over partial snow cover, the development of internal boundary layers, and atmospheric decoupling effects due to increasing stability at the snow cover. The interdependency of atmospheric conditions, topographic settings and snow coverage remains a challenge to accurately account for these processes in snow melt models.<br>In this experimental study, we used an Infrared Camera (VarioCam) pointing at thin synthetic projection screens with negligible heat capacity. Using the surface temperature of the screen as a proxy for the air temperature, we obtained a two-dimensional instantaneous measurement. Screens were installed across the transition between snow-free and snow-covered areas. With IR-measurements taken at 10Hz, we capture<span> the dynamics of turbulent temperature fluctuations</span><span> </span>over the patchy snow cover at high spatial and temporal resolution. From this data we were able to obtain high-frequency, two-dimensional windfield estimations adjacent to the surface.</p><p>Preliminary results show the formation of a stable internal boundary layer (SIBL), which was temporally highly variable. Our data suggest that the SIBL height is very shallow and strongly sensitive to the mean near-surface wind speed. Only strong gusts were capable of penetrating through this SIBL leading to an enhanced energy input to the snow surface.</p><p>With these type of results from our experiments and further measurements this spring we aim to better understand small scale energy transfer processes over patch snow cover and it’s dependency on the atmospheric conditions, enabling to improve parameterizations of these processes in coarser-resolution snow melt models.</p>


2009 ◽  
Vol 27 (12) ◽  
pp. 4435-4448 ◽  
Author(s):  
M. P. Morris ◽  
P. B. Chilson ◽  
T. J. Schuur ◽  
A. Ryzhkov

Abstract. The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD). This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009), in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009). Furthermore, the the study presents a method of investigating the time and height structure of DSDs.


2017 ◽  
Vol 17 (14) ◽  
pp. 8903-8922 ◽  
Author(s):  
Yang Yang ◽  
Hailong Wang ◽  
Steven J. Smith ◽  
Richard Easter ◽  
Po-Lun Ma ◽  
...  

Abstract. The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is −0.42 W m−2, with −0.31 W m−2 contributed by anthropogenic sulfate and −0.11 W m−2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of −0.44 W m−2. DMS has the largest contribution, explaining −0.23 W m−2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.


2012 ◽  
Vol 9 (2) ◽  
pp. 1439-1482 ◽  
Author(s):  
D. Y. F. Lai ◽  
N. T. Roulet ◽  
E. R. Humphreys ◽  
T. R. Moore ◽  
M. Dalva

Abstract. Accurate quantification of soil-atmosphere gas exchange is essential for understanding the magnitude and controls of greenhouse gas emissions. We used an automatic closed dynamic chamber system to measure the fluxes of CO2 and CH4 for several years at the ombrotrophic Mer Bleue peatland near Ottawa, Canada and found that atmospheric turbulence and chamber deployment period had a considerable influence on the observed flux rates. With a short deployment period of 2.5 min, CH4 flux exhibited strong diel patterns and both CH4 and nighttime CO2 effluxes were highly and negatively correlated with friction velocity as were the CO2 concentration gradients in the top 20 cm of peat. This suggests winds were flushing the very porous and relatively dry near surface peat layers, altering the concentration gradient and resulting in a 9 to 57% underestimate of CH4 flux at any time of day and a 13 to 21% underestimate of nighttime CO2 fluxes in highly turbulent conditions. Conversely, there was evidence of an overestimation of ~100% of CH4 and nighttime CO2 effluxes in calm atmospheric conditions possibly due to enhanced near-surface gas concentration gradient by mixing of chamber headspace air by fans. These problems were resolved by extending the deployment period to 30 min. After 13 min of chamber closure, the flux rate of CH4 and nighttime CO2 became constant and were not affected by turbulence thereafter, yielding a reliable estimate of the net biological fluxes. The measurement biases we observed likely exist to some extent in all chamber flux measurements made on porous and aerated substrate, such as peatlands, organic soils in tundra and forests, and snow-covered surfaces, but would be difficult to detect unless high frequency, semi-continuous observations are made.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Patrick Moriarty

AbstractLong-term weather and climate observatories can be affected by the changing environments in their vicinity, such as the growth of urban areas or changing vegetation. Wind plants can also impact local atmospheric conditions through their wakes, characterized by reduced wind speed and increased turbulence. We explore the extent to which the wind plants near an atmospheric measurement site in the central United States have affected their long-term measurements. Both direct observations and mesoscale numerical weather prediction simulations demonstrate how the wind plants induce a wind deficit aloft, especially in stable conditions, and a wind speed acceleration near the surface, which extend $$\sim 30$$ ∼ 30  km downwind of the wind plant. Turbulence kinetic energy is significantly enhanced within the wind plant wake in stable conditions, with near-surface observations seeing an increase of more than 30% a few kilometers downwind of the plants.


2021 ◽  
Author(s):  
Robert S. Fausto ◽  
Dirk van As ◽  
Kenneth D. Mankoff ◽  
Baptiste Vandecrux ◽  
Michele Citterio ◽  
...  

Abstract. The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheetproperties since 2007. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.Accurate measurements of the surface and near-surface atmospheric conditions in a changing climate is important for reliablepresent and future assessment of changes to the Greenland ice sheet. Here we present the PROMICE vision, methodology,and each link in the production chain for obtaining and sharing quality-checked data. In this paper we mainly focus on thecritical components for calculating the surface energy balance and surface mass balance. A user-contributable dynamic webbaseddatabase of known data quality issues is associated with the data products at (https://github.com/GEUS-PROMICE/PROMICE-AWS-data-issues/). As part of the living data option, the datasets presented and described here are available atDOI: 10.22008/promice/data/aws, https://doi.org/10.22008/promice/data/aws (Fausto and van As, 2019).


2021 ◽  
Vol 11 (23) ◽  
pp. 11249
Author(s):  
Ioannis Koutsoupakis ◽  
Yiannis Tsompanakis ◽  
Pantelis Soupios ◽  
Panagiotis Kirmizakis ◽  
SanLinn Kaka ◽  
...  

This study develops a comprehensive seismic risk model for the city of Chania, in Greece, which is located ina highly seismic-prone region due to the occurrenceof moderate to large earthquakes because of the nearby major subduction zone between African and Eurasian tectonic plates. The main aim is to reduce the seismic risk for the study area by incorporating the spatial distribution of the near-surface shear wave velocity model and the soil classification, along with all possible seismic sources, taking into account historical events. The study incorporates and correlates various ground motion scenarios and geological fault zones as well as information on existing buildings to develop a seismic risk model using QuakeIST software, and then the seismic hazard and a realistic prediction of resulting future adverse effects are assessed. The developed model can assist the municipal authorities of Chania to be prepared for potential seismic events, as well as city planners and decisionmakers, who can use the model as an effective decision-making tool to identify the seismic vulnerability of the city buildings and infrastructure. Thus, this study enables the implementation of an appropriate and viable earthquake-related hazards strategy to mitigate damage and losses in future earthquakes.


Sign in / Sign up

Export Citation Format

Share Document